Page 19 - IJB-9-3
P. 19
International Journal of Bioprinting Bioprinting of PDAC microtissues for drug screening
and the National Natural Science Foundation of China https://doi.org/10.1016/j.addr.2021.04.018
(No. 31927801). 7. Ren B, Cui M, Yang G, et al., 2018, Tumor microenvironment
participates in metastasis of pancreatic cancer. Mol Cancer,
Conflict of interest 17(1): 108.
The authors declare no conflicts of interest. https://doi.org/10.1186/s12943-018-0858-1
Author contributions 8. Huang X, Ding L, Liu XK, et al., 2021, Regulation of
tumor microenvironment for pancreatic cancer therapy.
Conceptualization: Xiaoyun Wei Biomaterials, 270: 120680.
Data curation: Beisi Huang https://doi.org/10.1016/j.biomaterials.2021.120680
Formal analysis: Keke Chen
Investigation: Beisi Huang 9. Uzunparmak B, Sahin IH, 2019, Pancreatic cancer
Resources: Ling Wang microenvironment: A current dilemma. Clin Transl Med, 8: 2.
Supervision: Mingen Xu https://doi.org/10.1186/s40169-019-0221-1
Writing – original draft: Beisi Huang 10. Wang S, Zheng Y, Yang F, et al., 2021, The molecular biology
Writing – review & editing: Xiaoyun Wei of pancreatic adenocarcinoma: Translational challenges and
clinical perspectives. Signal Transduct Target Ther, 6(1): 249.
Ethics approval and consent to participate
https://doi.org/10.1038/s41392-021-00659-4
Not applicable.
11. Valkenburg KC, De Groot AE, Pienta KJ, 2018, Targeting
Consent for publication the tumour stroma to improve cancer therapy. Nat Rev Clin
Oncol, 15: 366–381.
Not applicable.
https://doi.org/10.1038/s41571-018-0007-1
Availability of data 12. Monteiro MV, Ferreira LP, Rocha M, et al., 2022, Advances
Not applicable. in bioengineering pancreatic tumor-stroma physiomimetic
biomodels. Biomaterials, 287: 121653.
References https://doi.org/10.1016/j.biomaterials.2022.121653
1. Makohon-Moore A, Iacobuzio-Donahue CA, 2016, 13. Tomás-Bort E, Kieler M, Sharma S, et al., 2020, 3D
Pancreatic cancer biology and genetics from an evolutionary approaches to model the tumor microenvironment of
perspective. Nat Rev Cancer, 16: 553–565. pancreatic cancer. Theranostics, 10(11): 5074–5089.
https://doi.org/10.1038/nrc.2016.66 https://doi.org/10.7150/thno.42441
2. Wolfgang CL, Herman JM, Laheru DA, et al., 2013, Recent 14. Schnittert J, Bansal R, Prakash J, 2019, Targeting pancreatic
progress in pancreatic cancer. CA Cancer J Clin, 63: 318–348. stellate cells in cancer. Trends Cancer, 5: 128–142.
https://doi.org/10.3322/caac.21190 https://doi.org/10.1016/j.trecan.2019.01.001
3. Siegel RL, Miller KD, Jemal A, 2018, Cancer statistics, 2018. 15. Thomas D, Radhakrishnan P, 2019, Tumor-stromal crosstalk
CA Cancer J Clin, 68(1): 7–30. in pancreatic cancer and tissue fibrosis. Mol Cancer, 18(1): 14.
https://doi.org/10.3322/caac.21442 https://doi.org/10.1186/s12943-018-0927-5
4. Stathis A, Moore MJ, 2010, Advanced pancreatic carcinoma: 16. Zhan HX, Zhou B, Cheng YG, et al., 2017, Crosstalk between
Current treatment and future challenges. Nat Rev Clin stromal cells and cancer cells in pancreatic cancer: New
Oncol, 7: 163–172. insights into stromal biology. Cancer Lett, 392: 83–93.
https://doi.org/10.1038/nrclinonc.2009.236 https://doi.org/10.1016/j.canlet.2017.01.041
5. Yang J, Xu R, Wang C, et al., 2021, Early screening and 17. Yang WG, Cai SX, Yuan Z, et al., 2019, Mask-free generation
diagnosis strategies of pancreatic cancer: A comprehensive of multicellular 3D heterospheroids array for high-
review. Cancer Commun (Lond), 41: 1257–1274. throughput combinatorial anti-cancer drug screening.
Mater Design, 183: 108182.
https://doi.org/10.1002/cac2.12204
https://doi.org/10.1016/j.matdes.2019.108182
6. Heinrich MA, Mostafa AM, Morton JP, et al., 2021,
Translating complexity and heterogeneity of pancreatic 18. Zhuang P, Chiang YH, Fernanda MS, et al., 2021, Using
tumor: 3D in vitro to in vivo models. Adv Drug Deliv Rev, spheroids as building blocks towards 3D bioprinting of
174: 265–293. tumor microenvironment. Int J Bioprint, 7: 444.
Volume 9 Issue 3 (2023) 11 https://doi.org/10.18063/ijb.v9i3.676

