Page 383 - IJB-9-3
P. 383

International Journal of Bioprinting                                       3D-printed anistropic meniscus


            54.  Pillai MM, Gopinathan J, Selvakumar R, et al., 2018, Human   10: 844416.
               knee meniscus regeneration strategies: A review on recent      https://doi.org/10.3389/fbioe.2022.844416
               advances. Curr Osteoporos Rep, 16: 224–235.
                                                               66.  Skaggs DL, Warden WH, Mow VC, 1994, Radial Tie
               https://doi.org/10.1007/s11914-018-0436-x
                                                                  fibers influence the tensile properties of the bovine medial
            55.  Seitz AM, Galbusera F, Krais C, et al., 2013, Stress-relaxation   meniscus. J Orthop Res, 12: 176–185.
               response of human menisci under confined compression
               conditions. J Mech Behav Biomed Mater, 26: 68–80.      https://doi.org/10.1002/jor.1100120205
               https://doi.org/10.1016/j.jmbbm.2013.09.012     67.  Joshi MD, Suh JK, Marui T, et al., 1995, Interspecies variation
                                                                  of compressive biomechanical properties of the meniscus.
            56.  Higashioka MM, Chen JA, Hu JC,  et al., 20147, Building   J Biomed Mater Res, 29: 823–828.
               an anisotropic meniscus with zonal variations. Tissue Eng
               Part A, 20: 294–302.                               https://doi.org/10.1002/jbm.820290706
               https://doi.org/10.1089/ten.tea.2013.0098       68.  Danso EK, Mäkelä JT, Tanska P, et al., 2015, Characterization
                                                                  of site-specific biomechanical properties of human
            57.  Ahmed AM, Burke DL, 1983, In-vitro measurement of static   meniscus-importance of collagen and fluid on mechanical
               pressure distribution in synovial joints--part I: Tibial surface   nonlinearities. J Biomech, 48: 1499–1507.
               of the knee. J Biomech Eng, 105: 216–225.
                                                                  https://doi.org/10.1016/j.jbiomech.2015.01.048
               https://doi.org/10.1115/1.3138409
                                                               69.  Berni M, Marchiori G, Cassiolas G, et al., 2021, Anisotropy
            58.  Shrive NG, O’Connor JJ, Goodfellow JW, 1978, Load-bearing   and  inhomogeneity  of  permeability and  fibrous network
               in the knee joint. Clin Orthop Relat Res, 131: 279–287.  response in the pars intermedia of the human lateral
            59.  Kurosawa H, Fukubayashi T, Nakajima H, 1980, Load-  meniscus. Acta Biomater, 135: 393–402.
               bearing mode of the knee joint: Physical behavior of the      https://doi.org/10.1016/j.actbio.2021.08.020
               knee joint with or without menisci. Clin Orthop Relat Res,
               149, 283–290.                                   70.  Upton ML, Hennerbichler A, Fermor B, et al., 2006, Biaxial
                                                                  strain effects on cells from the inner and outer regions of the
               https://doi.org/10.1097/00003086-198006000-00039
                                                                  meniscus. Connect Tissue Res, 47: 207–214.
            60.  Kawahara Y, Uetani M, Fuchi K, et al., 1999, MR assessment      https://doi.org/10.1080/03008200600846663
               of movement and morphologic change in the menisci during
               knee flexion. Acta Radiol, 40: 610–614.         71.  Furumatsu T, Kanazawa T, Miyake Y, et al., 2012, Mechanical
                                                                  stretch increases Smad3-dependent CCN2 expression
               https://doi.org/10.3109/02841859909175596
                                                                  in inner meniscus cells: Stretch-induced CCN2 in the
            61.  Freutel M, Seitz AM, Galbusera F,  et al., 2014, Medial   meniscus. J Orthop Res, 30: 1738–1745.
               meniscal displacement and strain in three dimensions under
               compressive loads: MR assessment: 3D Displacement and      https://doi.org/10.1002/jor.22142
               strain of the meniscus. J Magn Reson Imaging, 40: 1181–1188.   72.  Guo W, Liu S, Zhu Y, et al., 2015, Advances and prospects
               https://doi.org/10.1002/jmri.24461                 in tissue-engineered meniscal scaffolds for meniscus
                                                                  regeneration. Stem Cells Int, 2015: 517520.
            62.  Beaupré A, Choukroun R, Guidouin R,  et al., 1986,
               Knee  menisci.  Correlation  between  microstructure  and      https://doi.org/10.1155/2015/517520
               biomechanics. Clin Orthop Relat Res, 208: 72–75.   73.  Vasiliadis  AV,  Koukoulias  N,  Katakalos  K,  2021,  Three-
               https://doi.org/10.1097/00003086-198607000-00016   dimensional-printed  scaffolds  for  meniscus  tissue
                                                                  engineering: Opportunity for the future in the orthopaedic
            63.  Bullough PG, Munuera L, Murphy J,  et al., 1970, The   world. J Funct Biomater, 12: 69.
               strength of the menisci of the knee as it relates to their fine
               structure. J Bone Joint Surg Br, 52: 564–567.      https://doi.org/10.3390/jfb12040069
               https://doi.org/10.1302/0301-620x.52b3.564      74.  Yang Y, Chen Z, Song X, et al., 2017, Biomimetic anisotropic
                                                                  reinforcement architectures by electrically assisted
            64.  Moyer JT, Priest R, Bouman T,  et al., 2013, Indentation   nanocomposite 3D printing. Adv Mater, 29: 1605750.
               properties and glycosaminoglycan content of human
               menisci in the deep zone. Acta Biomater, 9: 6624–6629.      https://doi.org/10.1002/adma.201770076
               https://doi.org/10.1016/j.actbio.2012.12.033    75.  Bahcecioglu G, Bilgen B, Hasirci N, et al., 2019, Anatomical
                                                                  meniscus construct with zone specific biochemical
            65.  Gonzalez-Leon EA, Hu JC, Athanasiou KA, 2022, Yucatan   composition and structural  organization.  Biomaterials,
               minipig knee meniscus regional biomechanics and
               biochemical structure support its suitability as a large animal   218: 119361.
               model for translational research.  Front Bioeng Biotechnol,      https://doi.org/10.1016/j.biomaterials.2019.119361


            Volume 9 Issue 3 (2023)                        375                          https://doi.org/10.18063/ijb.693
   378   379   380   381   382   383   384   385   386   387   388