Page 384 - IJB-9-3
P. 384

International Journal of Bioprinting                                       3D-printed anistropic meniscus


            76.  Din US, Sian TS, Deane CS, et al., 2021, Green tea extract   and applications. Front Cell Dev Biol, 9: 661802.
               concurrent with an oral nutritional supplement acutely      https://doi.org/10.3389/fcell.2021.661802
               enhances muscle microvascular blood flow without altering
               leg glucose uptake in healthy older adults.  Nutrients,   86.  Bahcecioglu G, Hasirci N, Bilgen B, et al., 2019, A 3D printed
               13: 3895.                                          PCL/hydrogel  construct with zone-specific  biochemical
                                                                  composition mimicking that of the meniscus. Biofabrication,
               https://doi.org/10.3390/nu13113895
                                                                  11: 025002.
            77.  Terpstra ML, Li J, Mensinga A,  et al., 2022, Bioink with      https://doi.org/10.1088/1758-5090/aaf707
               cartilage-derived extracellular matrix microfibers enables
               spatial control of vascular capillary formation in bioprinted   87.  Romanazzo S, Vedicherla S, Moran C, et al., 2018, Meniscus
               constructs. Biofabrication, 14: 034104.            ECM-functionalised hydrogels containing  infrapatellar fat
                                                                  pad-derived stem cells for bioprinting of regionally defined
               https://doi.org/10.1088/1758-5090/ac6282
                                                                  meniscal tissue. J Tissue Eng Regen Med, 12: e1826–e1835.
            78.  Kumar G, Tison CK, Chatterjee K,  et al., 2011, The
               determination of stem cell fate by 3D scaffold structures      https://doi.org/10.1002/term.2602
               through the control of cell shape. Biomaterials, 32: 9188–9196.   88.  Li H, Liao Z, Yang Z,  et al., 2021, 3D printed poly(ε-
                                                                  caprolactone)/meniscus extracellular matrix composite
               https://doi.org/10.1016/j.biomaterials.2011.08.054
                                                                  scaffold functionalized with kartogenin-releasing PLGA
            79.  Neffe AT, Pierce BF, Tronci G, et al., 2015, One step creation   microspheres for meniscus tissue engineering. Front Bioeng
               of multifunctional 3D architectured hydrogels inducing   Biotechnol, 9: 662381.
               bone regeneration. Adv Mater, 27: 1738–1744.
                                                                  https://doi.org/10.3389/fbioe.2021.662381
               https://doi.org/10.1002/adma.201404787
                                                               89.  Hao L, Tianyuan Z, Zhen Y,  et al., 2021, Biofabrication
            80.  Zhang ZZ, Jiang D, Ding JX, et al., 2016, Role of scaffold   of cell-free dual drug-releasing biomimetic scaffolds for
               mean  pore  size  in meniscus  regeneration.  Acta Biomater,   meniscal regeneration. Biofabrication, 14: 015001.
               43: 314–326.
                                                                  https://doi.org/10.1088/1758-5090/ac2cd7
               https://doi.org/10.1016/j.actbio.2016.07.050
                                                               90.  Gomes JM, Silva SS, Fernandes EM, et al., 2022, Silk fibroin/
            81.  Di Luca A, Szlazak K, Lorenzo-Moldero I,  et al., 2016,   cholinium gallate-based architectures as therapeutic tools.
               Influencing  chondrogenic  differentiation of  human   Acta Biomater, 147: 168–184.
               mesenchymal stromal cells in scaffolds displaying a      https://doi.org/10.1016/j.actbio.2022.05.020
               structural gradient in pore size. Acta Biomater, 36: 210–219.
                                                               91.  Yu Q, Han F, Yuan Z, et al., 2022, Fucoidan-loaded nanofibrous
               https://doi.org/10.1016/j.actbio.2016.03.014
                                                                  scaffolds promote annulus fibrosus repair by ameliorating
            82.  van der Wal WA, Meijer DT, Hoogeslag RA,  et al., 2022,   the  inflammatory  and  oxidative  microenvironments  in
               Meniscal tears, posterolateral and posteromedial corner   degenerative intervertebral discs. Acta Biomater, 148: 73–89.
               injuries, increased coronal plane, and increased sagittal
               plane  tibial  slope  all  influence  anterior  cruciate  ligament-     https://doi.org/10.1016/j.actbio.2022.05.054
               related knee kinematics and increase forces on the native   92.  Xu  B, Ye J,  Fan BS,  et al., 2023, Protein-spatiotemporal
               and reconstructed anterior cruciate ligament: A Systematic   partition releasing gradient porous scaffolds and anti-
               review of cadaveric studies. Arthroscopy, 38: 1664–1688.e1.   inflammatory and antioxidant regulation remodel tissue
                                                                  engineered anisotropic meniscus. Bioact Mater, 20: 194–207.
               https://doi.org/10.1016/j.arthro.2021.11.044
                                                                  https://doi.org/10.1016/j.bioactmat.2022.05.019
            83.  Stocco TD, Silva MC, Corat MA,  et al., 2022, Towards
               bioinspired meniscus-regenerative scaffolds: Engineering a   93.  Lammel AS, Hu X, Park SH, et al., 2010, Controlling silk
               novel 3D bioprinted patient-specific construct reinforced   fibroin particle features for drug delivery.  Biomaterials,
               by biomimetically aligned nanofibers.  Int J Nanomed,   31: 4583–4591.
               17: 1111–1124.
                                                                  https://doi.org/10.1016/j.biomaterials.2010.02.024
               https://doi.org/10.2147/ijn.s353937
                                                               94.  Gou S, Chen N, Wu X,  et al., 2022, Multi-responsive
            84.  Cengiz IF, Maia FR, da Silva Morais A, et al., 2020, Entrapped   nanotheranostics  with  enhanced  tumor  penetration  and
               in cage (EiC) scaffolds of 3D-printed polycaprolactone   oxygen self-producing capacities for multimodal synergistic
               and porous silk fibroin for meniscus tissue engineering.   cancer therapy. Acta Pharm Sin B, 12: 406–423.
               Biofabrication, 12: 025028.                        https://doi.org/10.1016/j.apsb.2021.07.001
               https://doi.org/10.1088/1758-5090/ab779f
                                                               95.  Li Z, Wu N, Cheng J, et al., 2020, Biomechanically, structurally
            85.  Li H, Li P, Yang Z,  et  al., 2021, Meniscal regenerative   and functionally meticulously tailored polycaprolactone/
               scaffolds based on biopolymers and polymers: Recent status   silk fibroin scaffold for meniscus regeneration. Theranostics,


            Volume 9 Issue 3 (2023)                        376                          https://doi.org/10.18063/ijb.693
   379   380   381   382   383   384   385   386   387   388   389