Page 384 - IJB-9-3
P. 384
International Journal of Bioprinting 3D-printed anistropic meniscus
76. Din US, Sian TS, Deane CS, et al., 2021, Green tea extract and applications. Front Cell Dev Biol, 9: 661802.
concurrent with an oral nutritional supplement acutely https://doi.org/10.3389/fcell.2021.661802
enhances muscle microvascular blood flow without altering
leg glucose uptake in healthy older adults. Nutrients, 86. Bahcecioglu G, Hasirci N, Bilgen B, et al., 2019, A 3D printed
13: 3895. PCL/hydrogel construct with zone-specific biochemical
composition mimicking that of the meniscus. Biofabrication,
https://doi.org/10.3390/nu13113895
11: 025002.
77. Terpstra ML, Li J, Mensinga A, et al., 2022, Bioink with https://doi.org/10.1088/1758-5090/aaf707
cartilage-derived extracellular matrix microfibers enables
spatial control of vascular capillary formation in bioprinted 87. Romanazzo S, Vedicherla S, Moran C, et al., 2018, Meniscus
constructs. Biofabrication, 14: 034104. ECM-functionalised hydrogels containing infrapatellar fat
pad-derived stem cells for bioprinting of regionally defined
https://doi.org/10.1088/1758-5090/ac6282
meniscal tissue. J Tissue Eng Regen Med, 12: e1826–e1835.
78. Kumar G, Tison CK, Chatterjee K, et al., 2011, The
determination of stem cell fate by 3D scaffold structures https://doi.org/10.1002/term.2602
through the control of cell shape. Biomaterials, 32: 9188–9196. 88. Li H, Liao Z, Yang Z, et al., 2021, 3D printed poly(ε-
caprolactone)/meniscus extracellular matrix composite
https://doi.org/10.1016/j.biomaterials.2011.08.054
scaffold functionalized with kartogenin-releasing PLGA
79. Neffe AT, Pierce BF, Tronci G, et al., 2015, One step creation microspheres for meniscus tissue engineering. Front Bioeng
of multifunctional 3D architectured hydrogels inducing Biotechnol, 9: 662381.
bone regeneration. Adv Mater, 27: 1738–1744.
https://doi.org/10.3389/fbioe.2021.662381
https://doi.org/10.1002/adma.201404787
89. Hao L, Tianyuan Z, Zhen Y, et al., 2021, Biofabrication
80. Zhang ZZ, Jiang D, Ding JX, et al., 2016, Role of scaffold of cell-free dual drug-releasing biomimetic scaffolds for
mean pore size in meniscus regeneration. Acta Biomater, meniscal regeneration. Biofabrication, 14: 015001.
43: 314–326.
https://doi.org/10.1088/1758-5090/ac2cd7
https://doi.org/10.1016/j.actbio.2016.07.050
90. Gomes JM, Silva SS, Fernandes EM, et al., 2022, Silk fibroin/
81. Di Luca A, Szlazak K, Lorenzo-Moldero I, et al., 2016, cholinium gallate-based architectures as therapeutic tools.
Influencing chondrogenic differentiation of human Acta Biomater, 147: 168–184.
mesenchymal stromal cells in scaffolds displaying a https://doi.org/10.1016/j.actbio.2022.05.020
structural gradient in pore size. Acta Biomater, 36: 210–219.
91. Yu Q, Han F, Yuan Z, et al., 2022, Fucoidan-loaded nanofibrous
https://doi.org/10.1016/j.actbio.2016.03.014
scaffolds promote annulus fibrosus repair by ameliorating
82. van der Wal WA, Meijer DT, Hoogeslag RA, et al., 2022, the inflammatory and oxidative microenvironments in
Meniscal tears, posterolateral and posteromedial corner degenerative intervertebral discs. Acta Biomater, 148: 73–89.
injuries, increased coronal plane, and increased sagittal
plane tibial slope all influence anterior cruciate ligament- https://doi.org/10.1016/j.actbio.2022.05.054
related knee kinematics and increase forces on the native 92. Xu B, Ye J, Fan BS, et al., 2023, Protein-spatiotemporal
and reconstructed anterior cruciate ligament: A Systematic partition releasing gradient porous scaffolds and anti-
review of cadaveric studies. Arthroscopy, 38: 1664–1688.e1. inflammatory and antioxidant regulation remodel tissue
engineered anisotropic meniscus. Bioact Mater, 20: 194–207.
https://doi.org/10.1016/j.arthro.2021.11.044
https://doi.org/10.1016/j.bioactmat.2022.05.019
83. Stocco TD, Silva MC, Corat MA, et al., 2022, Towards
bioinspired meniscus-regenerative scaffolds: Engineering a 93. Lammel AS, Hu X, Park SH, et al., 2010, Controlling silk
novel 3D bioprinted patient-specific construct reinforced fibroin particle features for drug delivery. Biomaterials,
by biomimetically aligned nanofibers. Int J Nanomed, 31: 4583–4591.
17: 1111–1124.
https://doi.org/10.1016/j.biomaterials.2010.02.024
https://doi.org/10.2147/ijn.s353937
94. Gou S, Chen N, Wu X, et al., 2022, Multi-responsive
84. Cengiz IF, Maia FR, da Silva Morais A, et al., 2020, Entrapped nanotheranostics with enhanced tumor penetration and
in cage (EiC) scaffolds of 3D-printed polycaprolactone oxygen self-producing capacities for multimodal synergistic
and porous silk fibroin for meniscus tissue engineering. cancer therapy. Acta Pharm Sin B, 12: 406–423.
Biofabrication, 12: 025028. https://doi.org/10.1016/j.apsb.2021.07.001
https://doi.org/10.1088/1758-5090/ab779f
95. Li Z, Wu N, Cheng J, et al., 2020, Biomechanically, structurally
85. Li H, Li P, Yang Z, et al., 2021, Meniscal regenerative and functionally meticulously tailored polycaprolactone/
scaffolds based on biopolymers and polymers: Recent status silk fibroin scaffold for meniscus regeneration. Theranostics,
Volume 9 Issue 3 (2023) 376 https://doi.org/10.18063/ijb.693

