Page 385 - IJB-9-3
P. 385

International Journal of Bioprinting                                       3D-printed anistropic meniscus


               10: 5090–5106.                                     extracellular  matrix  hydrogels  and  their  effects  on  cell-
                                                                  matrix interactions of fibrochondrocytes.  Biomed Mater,
               https://doi.org/10.7150/thno.44270
                                                                  17: 014105.
            96.  Pillai MM, Gopinathan J, Kumar RS,  et al., 2018, Tissue
               engineering of human knee meniscus using functionalized      https://doi.org/10.1088/1748-605x/ac4178
               and reinforced silk-polyvinyl alcohol composite three-  106. Zhong G, Yao J, Huang X,  et al., 2020, Injectable ECM
               dimensional scaffolds: Understanding the  in vitro and   hydrogel  for delivery  of BMSCs  enabled  full-thickness
               in vivo behavior. J Biomed Mater Res A, 106: 1722–1731.   meniscus repair in an orthotopic rat model. Bioact Mater,
               https://doi.org/10.1002/jbm.a.36372                5: 871–879.
            97.  Spang MT, Christman KL, 2018, Extracellular matrix      https://doi.org/10.1016/j.bioactmat.2020.06.008
               hydrogel therapies:  In  vivo applications and development.   107. Guo W, Chen M, Wang Z, et al., 2021, 3D-printed cell-free
               Acta Biomater, 68: 1–14.                           PCL-MECM scaffold with biomimetic micro-structure
               https://doi.org/10.1016/j.actbio.2017.12.019       and micro-environment to enhance in situ meniscus
                                                                  regeneration. Bioact Mater, 6: 3620–3633.
            98.  Hu X, Xia Z, Cai K, 2022, Recent advances in 3D hydrogel
               culture systems for mesenchymal stem cell-based therapy      https://doi.org/10.1016/j.bioactmat.2021.02.019
               and cell behavior regulation. J Mater Chem B, 10: 1486–1507.   108. Vassiliou G, 1986, Current concepts of cervical fractures
               https://doi.org/10.1039/D1TB02537F                 of the teeth and their treatment.  Stomatologia (Athenai),
                                                                  43: 399–411.
            99.  Yu Z, Lili J, Tiezheng Z,  et al., 2019, Development of
               decellularized  meniscus  extracellular  matrix  and  gelatin/  109. Rothrauff BB, Shimomura K, Gottardi R,  et al., 2017,
               chitosan scaffolds for meniscus tissue engineering. Biomed   Anatomical  region-dependent  enhancement  of
               Mater Eng, 30: 125–132.                            3-dimensional chondrogenic differentiation of human
                                                                  mesenchymal stem cells by soluble meniscus extracellular
               https://doi.org/10.3233/bme-191038                 matrix. Acta Biomater, 49: 140–151.
            100. Gao S, Guo W, Chen M,  et al., 2017, Fabrication and      https://doi.org/10.1016/j.actbio.2016.11.046
               characterization of  electrospun  nanofibers composed
               of decellularized meniscus extracellular matrix and   110. Zhang CY, Fu CP, Li XY,  et al., 2022, Three-dimensional
               polycaprolactone for meniscus tissue engineering. J Mater   bioprinting of decellularized extracellular matrix-based
               Chem B, 5: 2273–2285.                              bioinks for tissue engineering. Molecules, 27: 3442.
               https://doi.org/10.1039/c6tb03299k                 https://doi.org/10.3390/molecules27113442
            101. Shimomura K, Rothrauff BB, Tuan RS, 2017, Region-specific   111. Szojka A, Lalh K, Andrews SH,  et al., 2017, Biomimetic
               effect of the decellularized meniscus extracellular matrix on   3D printed scaffolds for meniscus tissue engineering.
               mesenchymal stem cell-based meniscus tissue engineering.   Bioprinting, 8: 1–7.
               Am J Sports Med, 45: 604–611.                      https://doi.org/10.1016/j.bprint.2017.08.001
               https://doi.org/10.1177/0363546516674184        112. Sooriyaarachchi D, Wu J, Feng A,  et al., 2019, Hybrid
            102. Gao S, Yuan Z, Guo W,  et al., 2017, Comparison of   fabrication of biomimetic meniscus scaffold by 3D printing
               glutaraldehyde and carbodiimides to crosslink tissue   and parallel electrospinning. Proc Manuf, 34: 528–534.
               engineering scaffolds fabricated by decellularized porcine      https://doi.org/10.1016/j.promfg.2019.06.216
               menisci. Mater Sci Eng C Mater Biol Appl, 71: 891–900.
                                                               113. Lan X, Ma Z, Szojka  AR,  et al., 2021, TEMPO-oxidized
               https://doi.org/10.1016/j.msec.2016.10.074         cellulose nanofiber-alginate hydrogel as a bioink for human
            103. Sun Y, Zhang Y, Wu Q, et al., 2021, 3D-bioprinting ready-to-  meniscus tissue engineering.  Front Bioeng Biotechnol,
               implant anisotropic menisci recapitulate healthy meniscus   9: 766399.
               phenotype  and  prevent  secondary  joint  degeneration.      https://doi.org/10.3389/fbioe.2021.766399
               Theranostics, 11: 5160–5173.
                                                               114. Costa JB, Park J, Jorgensen AM,  et al., 2020, 3D
               https://doi.org/10.7150/thno.54864                 bioprinted highly elastic hybrid constructs for advanced
            104. Xia B, Kim DH, Bansal S,  et al., 2021, Development of   fibrocartilaginous tissue regeneration.  Chem Mater,
               a decellularized meniscus matrix-based nanofibrous   32: 8733–8746.
               scaffold for meniscus tissue engineering.  Acta Biomater,      https://doi.org/10.1021/acs.chemmater.0c03556
               128: 175–185.
                                                               115. Jian Z, Zhuang T, Qinyu T, et al., 2021, 3D bioprinting of
               https://doi.org/10.1016/j.actbio.2021.03.074
                                                                  a biomimetic meniscal scaffold for application in tissue
            105. Wu J, Xu J, Huang Y, et al., 2021, Regional-specific meniscal   engineering. Bioact Mater, 6: 1711–1726.


            Volume 9 Issue 3 (2023)                        377                          https://doi.org/10.18063/ijb.693
   380   381   382   383   384   385   386   387   388   389   390