Page 448 - IJB-9-3
P. 448

International Journal of Bioprinting              Gelatin-PVA crosslinked genipin bioinks for skin tissue engineering


            23.  Badylak  SF,  Freytes  DO,  Gilbert  TW,  2009,  Extracellular      https://doi.org/10.3390/biomedicines8100441
               matrix as a biological scaffold material: Structure and   34.  Huang S, Yao B, Xie J, et al., 2016, 3D bioprinted extracellular
               function. Acta Biomater, 5: 1–13.
                                                                  matrix mimics facilitate directed differentiation of epithelial
               https://doi.org/10.1016/j.actbio.2008.09.013       progenitors for sweat gland regeneration.  Acta Biomater,
                                                                  32: 170–177.
            24.  Huang  CY,  Hu  KH,  Wei  ZH,  2016,  Comparison  of  cell
               behavior on pva/pva-gelatin electrospun nanofibers with      https://doi.org/10.1016/j.actbio.2015.12.039
               random and aligned configuration. Sci Rep, 6: 37960.
                                                               35.  He B, Wang J, Xie M, et al., 2022, 3D printed biomimetic
               https://doi.org/10.1038/srep37960                  epithelium/stroma bilayer hydrogel implant for corneal
            25.  Nguyen TH, Ventura R, Min YK,  et al., 2016, Genipin   regeneration. Bioact Mater, 17: 234–247.
               cross-linked polyvinyl alcohol-gelatin hydrogel for bone      https://doi.org/10.1016/j.bioactmat.2022.01.034
               regeneration. J Biomed Sci Eng, 9: 419–429.
                                                               36.  Rodríguez-rodríguez R, Espinosa-andrews H, Velasquillo-
               https://doi.org/10.4236/jbise.2016.99037           Martínez C,  et al., 2020, Composite hydrogels based on
            26.  Bedran-Russo AK, Pereira PN, Duarte WR,  et al., 2007,   gelatin, chitosan and polyvinyl  alcohol to  biomedical
               Application of crosslinkers to dentin collagen enhances the   applications : A review. Int J Polym Mater Polym Biomater,
               ultimate tensile strength. J Biomed Mater Res Part B Appl   69: 1–20.
               Biomater, 80: 268–272.                             https://doi.org/10.1080/00914037.2019.1581780
               https://doi.org/10.1002/jbm.b.30593             37.  De Stefano P, Briatico-Vangosa F, Bianchi E,  et al., 2021,
            27.  Fernandes DM, Barbosaa WS, Rangel WS,  et al., 2021,   Bioprinting of matrigel scaffolds for cancer research.
               Polymeric membrane based on polyactic acid and babassu   Polymers (Basel), 13: 2026.
               oil for wound healing. Mater Today Commun, 26: 102173.      https://doi.org/10.3390/polym13122026
               https://doi.org/10.1016/j.mtcomm.2021.102173    38.  Chimene D, Lennox KK, Kaunas RR, et al., 2016, Advanced
            28.  Ghaffari  R,  Salimi-Kenari H,  Fahimipour  F,  et  al.,  2020,   bioinks for 3D printing: A  materials science perspective.
               Fabrication and characterization of dextran/nanocrystalline   Ann Biomed Eng, 44: 2090–2102.
               β-tricalcium phosphate nanocomposite hydrogel scaffolds.      https://doi.org/10.1007/s10439-016-1638-y
               Int J Biol Macromol, 148: 434–448.
                                                               39.  Shie  MY, Lee JJ,  Ho CC,  et al.,  2020, Effects of  gelatin
               https://doi.org/10.1016/j.ijbiomac.2020.01.112     methacrylate bio-ink concentration on mechano-physical
            29.  Fauzi MB, Lokanathan Y, Nadzir MM,  et  al., 2017,   properties and human dermal. Polymers (Basel), 2: 1930.
               Attachment, proliferation, and morphological properties of      https://doi.org/10.3390/polym12091930
               human dermal fibroblasts on ovine tendon collagen scaffolds:
               A comparative study. Malaysian J Med Sci, 24: 33–43.   40.  Ding H, Chang RC, 2018, Printability study of bioprinted
                                                                  tubular structures using liquid hydrogel precursors in a
               https://doi.org/10.21315/mjms2017.24.2.5           support bath. Appl Sci, 8: 403.
            30.  Maver T, Hribernik S, Mohan T,  et al., 2015, Functional      https://doi.org/10.3390/app8030403
               wound dressing materials with highly tunable drug release
               properties. RSC Adv, 5: 77873–77884.            41.  Yang D, Li Y, Nie J, 2007, Preparation of gelatin/PVA
                                                                  nanofibers and their potential application in controlled
               https://doi.org/10.1039/C5RA11972C
                                                                  release of drugs. Carbohydr Polym, 69: 538–543.
            31.  Rodríguez-Rodríguez R, García-Carvajal ZY, Jiménez-     https://doi.org/10.1016/j.carbpol.2007.01.008
               Palomar I,  et al., 2019, Development of gelatin/chitosan/
               PVA hydrogels: Thermal stability, water state, viscoelasticity,   42.  Sgonc R, Gruber J, 2013, Age-related aspects of cutaneous
               and cytotoxicity assays. J Appl Polym Sci, 136: 1–9.   wound healing: A mini-review. Gerontology, 59: 159–164.
               https://doi.org/10.1002/app.47149                  https://doi.org/10.1159/000342344
            32.  Ghanbari M, Salavati-Niasari M, Mohandes F, 2021,   43.  Zandi N, Dolatyar B, Lotfi R,  et  al., 2021, Biomimetic
               Injectable hydrogels based on oxidized alginate-gelatin   nanoengineered scaffold for enhanced full-thickness
               reinforced by carbon nitride quantum dots for tissue   cutaneous wound healing. Acta Biomater, 124: 191–204.
               engineering. Int J Pharm, 602: 120660.
                                                                  https://doi.org/10.1016/j.actbio.2021.01.029
               https://doi.org/10.1016/j.ijpharm.2021.120660
                                                               44.  Hezaveh H, Muhamad II, 2013, Controlled drug release
            33.  Tan CT, Liang K, Ngo ZH, et al., 2020, Application of 3D   via minimization of burst release in pH-response kappa-
               bioprinting technologies to the management and treatment   carrageenan/polyvinyl alcohol hydrogels.  Chem Eng Res
               of diabetic foot ulcers. Biomedicines, 8: 441.     Des, 91: 508–519.


            Volume 9 Issue 3 (2023)                        440                          https://doi.org/10.18063/ijb.677
   443   444   445   446   447   448   449   450   451   452   453