Page 450 - IJB-9-3
P. 450
International Journal of Bioprinting Gelatin-PVA crosslinked genipin bioinks for skin tissue engineering
blends: Thermal and rheological characterizations. J Food Acad Sci USA, 86: 933–937.
Eng, 95: 588–596.
72. Labus K, Radosinski L, Kotowski P, 2021, Functional
https://doi.org/10.1016/j.jfoodeng.2009.06.023 properties of two-component hydrogel systems based
66. Gelli R, Del Buffa S, Tempesti P, et al., 2017, Multi-scale on gelatin and polyvinyl alcohol-experimental studies
investigation of gelatin/poly(vinyl alcohol) interactions in supported by computational analysis. Int J Mol Sci, 22: 9909.
water. Colloids Surf A Physicochem Eng Asp, 532: 18–25. https://doi.org/10.3390/ijms22189909
https://doi.org/10.1016/j.colsurfa.2017.07.049 73. Erdag D, Koc SN, Oksuzomer MF, et al., 2021, Synergistic
67. Zandraa O, Ngwabebhoh FA, Patwa R, et al., 2021, effect of selenium and genipin triggers viability of 3T3 cells
Development of dual crosslinked mumio-based hydrogel on PVA/gelatin scaffolds. Acta Bioeng Biomech, 24: 179–190.
dressing for wound healing application: Physico-chemistry https://doi.org/10.37190/ABB-01944-2021-04
and antimicrobial activity. Int J Pharm, 607: 120952.
74. Barba BJ, Oyama TG, Taguchi M, 2021, Simple fabrication
https://doi.org/10.1016/j.ijpharm.2021.120952
of gelatin-polyvinyl alcohol bilayer hydrogel with wound
68. Swaroop K, Gaana MJ, Shruthi SS, et al., 2019, Studies on dressing and nonadhesive duality. Polym Adv Technol,
swelling behaviour of radiolytically synthesised PVA/gelatin 32: 4406–4414.
hydrogels. AIP Conf Proc, 2115: 030050.
https://doi.org/10.1002/pat.5442
https://doi.org/10.1063/1.5112889
75. George B, Bhatia N, Kumar A, et al., 2022, Bioinspired
69. Zawani M, Maarof M, Tabata Y, et al., 2022, Quercetin- gelatin based sticky hydrogel for diverse surfaces in burn
embedded gelastin injectable hydrogel as provisional wound care. Sci Rep, 12: 13735.
biotemplate for future cutaneous application: Optimization
and in vitro evaluation. Gels, 8: 623. https://doi.org/10.1038/s41598-022-17054-w
https://doi.org/10.3390/gels8100623 76. Kakarla AB, Kong I, Turek I, et al., 2022, Printable gelatin,
alginate and boron nitride nanotubes hydrogel-based ink for
70. Thangprasert A, Tansakul C, Thuaksubun N, et al., 2019, 3D bioprinting and tissue engineering applications. Mater
Mimicked hybrid hydrogel based on gelatin/PVA for tissue Des, 213: 110362.
engineering in subchondral bone interface for osteoarthritis
surgery. Mater Des, 183: 108113. https://doi.org/10.1016/j.matdes.2021.110362
https://doi.org/10.1016/j.matdes.2019.108113 77. Crosby CO, Stern B, Kalkunte N, et al., 2022, Interpenetrating
polymer network hydrogels as bioactive scaffolds for tissue
71. Yannas IV, Lee E, Orgill DP, et al., 1989, Synthesis and
characterization of a model extracellular matrix that induces engineering. Rev Chem Eng, 38: 347–361.
partial regeneration of adult mammalian skin. Proc Natl https://doi.org/10.1515/revce-2020-0039
Volume 9 Issue 3 (2023) 442 https://doi.org/10.18063/ijb.677

