Page 449 - IJB-9-3
P. 449

International Journal of Bioprinting              Gelatin-PVA crosslinked genipin bioinks for skin tissue engineering


               https://doi.org/10.1016/j.cherd.2012.08.014     56.  Arif MM, Fauzi MB, Nordin A, et al., 2020, Fabrication of
                                                                  bio-based gelatin sponge for potential use as a functional
            45.  Mahnama H, Dadbin S, Frounchi M, et al., 2017, Preparation
               of biodegradable gelatin/PVA porous scaffolds for skin   acellular skin substitute. Polymers (Basel), 12: 1–19.
               regeneration. Artif Cells Nanomed Biotechnol, 45: 928–935.      https://doi.org/10.3390/polym12112678
               https://doi.org/10.1080/21691401.2016.1193025   57.  Wang QS, Wang GF, Zhang HY, et al., 2021, Development of
                                                                  genipin crosslinked gelatin matrices on surface interaction:
            46.  Cheng L, Zou Q, Zou L, et al., 2013, Properties of vanillin
               modified poly(vinyl alcohol)/gelatin composite. Appl Mech   Enhancing the biocompatibility by attenuating sterile
               Mater, 327: 48–52.                                 inflammation. Chin J Chem Eng, 38: 205–215.
                                                                  https://doi.org/10.1016/j.cjche.2021.03.022
               https://doi.org/10.4028/www.scientific.net/AMM.327.48
                                                               58.  Nike DU, Fadilah NI, Sallehuddin N, et al., 2022, Genipin-
            47.  Zidaric T, Milojevic M, Gradisnik L, et al., 2020, Polysaccharide-  crosslinking effects on biomatrix development for cutaneous
               based bioink formulation for 3D bioprinting of an  in vitro   wound healing: A concise review. Front Bioeng Biotechnol,
               model of the human dermis. Nanomaterials, 10: 733.
                                                                  10: 1–16.
               https://doi.org/10.3390/nano10040733
                                                                  https://doi.org/10.3389/fbioe.2022.865014
            48.  Naghieh S, Chen X, 2021, Printability-A key issue in
               extrusion-based bioprinting. J Pharm Anal, 11: 564–579.   59.  Kim JM, Ko H, Kim SJ,  et  al., 2016, Chemopreventive
                                                                  properties of genipin on AGS cell line via induction of
               https://doi.org/10.1016/j.jpha.2021.02.001         JNK/Nrf2/ARE signaling pathway.  J  Biochem Mol Toxicol,
                                                                  30: 45–54.
            49.  Agubata CO, Mbah MA, Akpa PA, et al., 2021, Application
               of self-healing, swellable and biodegradable polymers for      https://doi.org/10.1002/jbt.21741
               wound treatment. J Wound Care, 30: IVI–IVX.
                                                               60.  Fan X, Lin L, Cui B, et al., 2020, Therapeutic potential of
               https://doi.org/10.12968/jowc.2021.30.Sup9a.IV     genipin in various acute liver injury, fulminant hepatitis,
                                                                  NAFLD and other non-cancer liver diseases: More friend
            50.  Jeong H, Lee DY, Yang DH, et al., 2022, Mechanical and cell-
               adhesive properties of gelatin/polyvinyl alcohol hydrogels   than foe. Pharmacol Res, 159: 104945.
               and  their  application  in  wound  dressing.  Macromol Res,      https://doi.org/10.1016/j.phrs.2020.104945
               30: 223–229.
                                                               61.  Naseriyeh T, Noori T, Zhaleh H, et al., 2022, Enhanced in
               https://doi.org/10.1007/s13233-022-0027-7          vitro cytotoxicity and intracellular uptake of genipin via
                                                                  loaded on nano-liposomes made from soybean lecithin in
            51.  Xu R, Xia H, He W,  et al., 2016, Controlled water vapor
               transmission rate promotes wound-healing via wound   MCF-7 cells. Nanomed J, 9: 67–76.
               re-epithelialization and contraction enhancement. Sci Rep,      https://doi.org/10.22038/NMJ.2022.60524.1626
               6: 1–12.
                                                               62.  El-Habashy SE, El-Kamel AH, Essawy MM,  et al., 2021,
               https://doi.org/10.1038/srep24596                  Engineering 3D-printed core-shell hydrogel scaffolds
                                                                  reinforced with hybrid hydroxyapatite/polycaprolactone
            52.  Sutar T, Bangde P, Dandekar P,  et al., 2021, Fabrication   nanoparticles for in vivo bone regeneration. Biomater Sci,
               of herbal hemostat films loaded with medicinal tridax   9: 4019–4039.
               procumbenns extracts. Fibers Polym, 22: 2135–2144.
                                                                  https://doi.org/10.1039/d1bm00062d
               https://doi.org/10.1007/s12221-021-0808-1
                                                               63.  Tung NT, Vu VD, Nguyen PL, 2019, DoE-based development,
            53.  Lou CW, 2008, Process technology and properties evaluation
               of a chitosan-coated tencel/cotton nonwoven fabric as a   physicochemical characterization, and pharmacological
               wound dressing. Fibers Polym, 9: 286–292.          evaluation of a topical hydrogel containing betamethasone
                                                                  dipropionate microemulsion. Colloids Surf B Biointerfaces,
               https://doi.org/10.1007/s12221-008-0046-9          181: 480–488.
            54.  Gu Z, Xie H, Huang C, et al., 2013, Preparation of chitosan/     https://doi.org/10.1016/j.colsurfb.2019.06.002
               silk fibroin blending membrane fixed with alginate dialdehyde   64.  Masri S, Maarof M, Mohd NF,  et al., 2022, Injectable
               for wound dressing. Int J Biol Macromol, 58: 121–126.
                                                                  crosslinked genipin hybrid gelatin-PVA hydrogels for
               https://doi.org/10.1016/j.ijbiomac.2013.03.059     future use as bioinks in expediting cutaneous healing
            55.  Butler MF, Ng YF, Pudney PD, 2003, Mechanism and   capacity : Physicochemical characterisation and cytotoxicity
               kinetics of the crosslinking reaction between biopolymers   evaluation. Biomedicine, 10: 2651.
               containing primary amine groups and genipin. J Polym Sci      https://doi.org/10.3390/biomedicines10102651
               Part A Polym Chem, 41: 3941–3953.
                                                               65.  Moraes IC, Carvalho RA, Bittante AM,  et al., 2009, Film
               https://doi.org/10.1002/pola.10960                 forming solutions based on gelatin and poly(vinyl alcohol)


            Volume 9 Issue 3 (2023)                        441                         https://doi.org/10.18063/ijb.677
   444   445   446   447   448   449   450   451   452   453   454