Page 261 - IJB-9-4
P. 261
International Journal of Bioprinting Applications of 3D printing in aging
5. Niccoli T, Partridge L, 2012, Ageing as a risk factor for 17. Li P, Fu L, Liao Z, et al., 2021, Chitosan hydrogel/3D-
disease. Curr Biol, 22:R741–R752. printed poly(ε-caprolactone) hybrid scaffold containing
synovial mesenchymal stem cells for cartilage regeneration
https://doi.org/10.1016/j.cub.2012.07.024
based on tetrahedral framework nucleic acid recruitment.
6. Johnston CB, Dagar M, 2020, Osteoporosis in older adults. Biomaterials, 278:121131.
Med Clin North Am, 104:873–884.
https://doi.org/10.1016/j.biomaterials.2021.121131
https://doi.org/10.1016/j.mcna.2020.06.004
18. Ma C, Li W, Li D, et al., 2022, Photoacoustic imaging of
7. Martel-Pelletier J, Barr A, Cicuttini F, et al., 2016, 3D-printed vascular networks. Biofabrication, 14:025001.
Osteoarthritis. Nat Rev Dis Primers, 2:16072.
https://doi.org/10.1088/1758-5090/ac49d5
https://doi.org/10.1038/nrdp.2016.72
8. Avvedimento M, Tang GHL, 2021, Transcatheter aortic 19. Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D
valve replacement (TAVR): Recent updates. Prog Cardiovasc bioprinting of perfusable vascular constructs using a blend
Dis, 69:73–83. bioink. Biomaterials, 106:58–68.
https://doi.org/10.1016/j.pcad.2021.11.003 https://doi.org/10.1016/j.biomaterials.2016.07.038
9. Pinter J, Hanson Camilla S, Chapman JR, et al., 2017, 20. Krieger KJ, Bertollo N, Dangol M, et al., 2019, Simple and
Perspectives of older kidney transplant recipients on kidney customizable method for fabrication of high-aspect ratio
transplantation. Clin J Am Soc Nephrol, 12:443–453. microneedle molds using low-cost 3D printing. Microsyst
Nanoeng, 5:42.
https://doi.org/10.2215/cjn.05890616
https://doi.org/10.1038/s41378-019-0088-8
10. Zhu W, Ma X, Gou M, et al., 2016, 3D printing of functional
biomaterials for tissue engineering. Curr Opin Biotechnol, 21. Choo S, Jin S, Jung J, 2022, Fabricating high-resolution
40:103–112. and high-dimensional microneedle mold through the
https://doi.org/10.1016/j.copbio.2016.03.014 resolution improvement of stereolithography 3D printing.
Pharmaceutics, 14(4):766.
11. Matai I, Kaur G, Seyedsalehi A, et al., 2020, Progress in
3D bioprinting technology for tissue/organ regenerative https://doi.org/10.3390/pharmaceutics14040766
engineering. Biomaterials, 226:119536. 22. Lorenz T, Iskandar MM, Baeghbali V, et al., 2022, 3D food
https://doi.org/10.1016/j.biomaterials.2019.119536 printing applications related to dysphagia: A narrative
review. Foods, 11(12):1789.
12. Wang S, Zhao S, Yu J, et al., 2022, Advances in translational
3D printing for cartilage, bone, and osteochondral tissue https://doi.org/10.3390/foods11121789
engineering. Small, 18:e2201869.
23. Giura L, Urtasun L, Belarra A, et al., 2021, Exploring tools
https://doi.org/10.1002/smll.202201869 for designing dysphagia-friendly foods: A review. Foods,
13. Lozano R, Stevens L, Thompson BC, et al., 2015, 3D printing 10(6):1334.
of layered brain-like structures using peptide modified https://doi.org/10.3390/foods10061334
gellan gum substrates. Biomaterials, 67:264–273.
24. Ligon SC, Liska R, Stampfl J, et al., 2017, Polymers for 3D
https://doi.org/10.1016/j.biomaterials.2015.07.022
printing and customized additive manufacturing. Chem
14. Teng CL., Chen JY, Chang TL, et al., 2020, Design of Rev, 117:10212–10290.
photocurable, biodegradable scaffolds for liver lobule
regeneration via digital light process-additive manufacturing. https://doi.org/10.1021/acs.chemrev.7b00074
Biofabrication, 12:035024. 25. Cailleaux S, Sanchez-Ballester NM, Gueche YA, et al.,
https://doi.org/10.1088/1758-5090/ab69da 2021, Fused deposition modeling (FDM), the new asset
for the production of tailored medicines. J Control Release,
15. Yanagi Y, Nakayama K, Taguchi T, et al., 2017, In vivo and 330:821–841.
ex vivo methods of growing a liver bud through tissue
connection. Sci Rep, 7:14085. https://doi.org/10.1016/j.jconrel.2020.10.056
https://doi.org/10.1038/s41598-017-14542-2 26. Frölich AM, Spallek J, Brehmer L et al., 2016, 3D printing
of intracranial aneurysms using fused deposition modeling
16. Zhou X, Tenaglio S, Esworthy T, , et al., 2020, Three-
dimensional printing biologically inspired DNA-based offers highly accurate replications. AJNR Am J Neuroradiol,
gradient scaffolds for cartilage tissue regeneration. ACS Appl 37:120–124.
Mater Interfaces, 12:33219–33228. https://doi.org/10.3174/ajnr.A4486
https://doi.org/10.1021/acsami.0c07918
Volume 9 Issue 4 (2023) 253 https://doi.org/10.18063/ijb.732

