Page 261 - IJB-9-4
P. 261

International Journal of Bioprinting                                     Applications of 3D printing in aging



            5.   Niccoli T, Partridge L, 2012, Ageing as a risk factor for   17.  Li P, Fu L, Liao Z, et al., 2021, Chitosan hydrogel/3D-
               disease. Curr Biol, 22:R741–R752.                  printed poly(ε-caprolactone) hybrid scaffold containing
                                                                  synovial mesenchymal stem cells for cartilage regeneration
               https://doi.org/10.1016/j.cub.2012.07.024
                                                                  based on tetrahedral framework nucleic acid recruitment.
            6.   Johnston CB, Dagar M, 2020, Osteoporosis in older adults.   Biomaterials, 278:121131.
               Med Clin North Am, 104:873–884.
                                                                  https://doi.org/10.1016/j.biomaterials.2021.121131
               https://doi.org/10.1016/j.mcna.2020.06.004
                                                               18.  Ma C, Li W, Li D, et al., 2022, Photoacoustic imaging of
            7.   Martel-Pelletier J, Barr A, Cicuttini F,  et  al., 2016,   3D-printed vascular networks. Biofabrication, 14:025001.
               Osteoarthritis. Nat Rev Dis Primers, 2:16072.
                                                                  https://doi.org/10.1088/1758-5090/ac49d5
               https://doi.org/10.1038/nrdp.2016.72
            8.   Avvedimento M, Tang GHL, 2021, Transcatheter aortic   19.  Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D
               valve replacement (TAVR): Recent updates. Prog Cardiovasc   bioprinting of perfusable vascular constructs using a blend
               Dis, 69:73–83.                                     bioink. Biomaterials, 106:58–68.
               https://doi.org/10.1016/j.pcad.2021.11.003         https://doi.org/10.1016/j.biomaterials.2016.07.038
            9.   Pinter J, Hanson Camilla S, Chapman JR, et al., 2017,   20.  Krieger KJ, Bertollo N, Dangol M, et al., 2019, Simple and
               Perspectives of older kidney transplant recipients on kidney   customizable method for fabrication of high-aspect ratio
               transplantation. Clin J Am Soc Nephrol, 12:443–453.  microneedle  molds  using low-cost  3D printing.  Microsyst
                                                                  Nanoeng, 5:42.
               https://doi.org/10.2215/cjn.05890616
                                                                  https://doi.org/10.1038/s41378-019-0088-8
            10.  Zhu W, Ma X, Gou M, et al., 2016, 3D printing of functional
               biomaterials for tissue engineering.  Curr Opin Biotechnol,   21.  Choo S, Jin S, Jung J, 2022, Fabricating high-resolution
               40:103–112.                                        and high-dimensional microneedle mold through the
               https://doi.org/10.1016/j.copbio.2016.03.014       resolution improvement of stereolithography 3D printing.
                                                                  Pharmaceutics, 14(4):766.
            11.  Matai I, Kaur G, Seyedsalehi A,  et  al., 2020, Progress in
               3D bioprinting technology for tissue/organ regenerative   https://doi.org/10.3390/pharmaceutics14040766
               engineering. Biomaterials, 226:119536.          22.  Lorenz T, Iskandar MM, Baeghbali V, et al., 2022, 3D food
               https://doi.org/10.1016/j.biomaterials.2019.119536  printing applications related to dysphagia: A narrative
                                                                  review. Foods, 11(12):1789.
            12.  Wang S, Zhao S, Yu J, et al., 2022, Advances in translational
               3D printing for cartilage, bone, and osteochondral tissue   https://doi.org/10.3390/foods11121789
               engineering. Small, 18:e2201869.
                                                               23.  Giura L, Urtasun L, Belarra A, et al., 2021, Exploring tools
               https://doi.org/10.1002/smll.202201869             for designing dysphagia-friendly foods: A review.  Foods,
            13.  Lozano R, Stevens L, Thompson BC, et al., 2015, 3D printing   10(6):1334.
               of layered brain-like structures using peptide modified   https://doi.org/10.3390/foods10061334
               gellan gum substrates. Biomaterials, 67:264–273.
                                                               24.  Ligon SC, Liska R, Stampfl J, et al., 2017, Polymers for 3D
               https://doi.org/10.1016/j.biomaterials.2015.07.022
                                                                  printing and customized additive manufacturing.  Chem
            14.  Teng CL., Chen JY, Chang TL, et al., 2020, Design of   Rev, 117:10212–10290.
               photocurable, biodegradable scaffolds for liver lobule
               regeneration via digital light process-additive manufacturing.   https://doi.org/10.1021/acs.chemrev.7b00074
               Biofabrication, 12:035024.                      25.  Cailleaux S, Sanchez-Ballester NM,  Gueche YA,  et al.,
               https://doi.org/10.1088/1758-5090/ab69da           2021, Fused deposition modeling (FDM), the new asset
                                                                  for the production of tailored medicines. J Control Release,
            15.  Yanagi Y, Nakayama K, Taguchi T, et al., 2017, In vivo and   330:821–841.
               ex vivo methods of growing a liver bud through tissue
               connection. Sci Rep, 7:14085.                      https://doi.org/10.1016/j.jconrel.2020.10.056
               https://doi.org/10.1038/s41598-017-14542-2      26.  Frölich AM, Spallek J, Brehmer L et al., 2016, 3D printing
                                                                  of intracranial aneurysms using fused deposition modeling
            16.  Zhou X, Tenaglio S, Esworthy  T, , et al., 2020, Three-
               dimensional printing biologically inspired DNA-based   offers highly accurate replications. AJNR Am J Neuroradiol,
               gradient scaffolds for cartilage tissue regeneration. ACS Appl   37:120–124.
               Mater Interfaces, 12:33219–33228.                  https://doi.org/10.3174/ajnr.A4486
               https://doi.org/10.1021/acsami.0c07918



            Volume 9 Issue 4 (2023)                        253                         https://doi.org/10.18063/ijb.732
   256   257   258   259   260   261   262   263   264   265   266