Page 265 - IJB-9-4
P. 265
International Journal of Bioprinting Applications of 3D printing in aging
burden of disease 2010 study. Ann Rheum Dis, 73: 106. Van HD Liang B, Anania S, et al., 2022, 3D-printed synthetic
1323–1330. hydroxyapatite scaffold with in silico optimized macrostructure
enhances bone formation in vivo. Adv Funct Mater, 32.
https://doi.org/10.1136/annrheumdis-2013-204763
https://doi.org/10.1002/adfm.202105002
96. Hiligsmann M, Cooper C, Arden N, et al., 2013, Health
economics in the field of osteoarthritis: An expert’s 107. Guillaume O, Geven MA, Sprecher CM, et al., 2017,
consensus paper from the European Society for Clinical Surface-enrichment with hydroxyapatite nanoparticles in
and Economic Aspects of Osteoporosis and Osteoarthritis stereolithography-fabricated composite polymer scaffolds
(ESCEO). Semin Arthritis Rheum, 43:303–313. promotes bone repair. Acta Biomater, 54:386–398.
https://doi.org/10.1016/j.semarthrit.2013.07.003 https://doi.org/10.1016/j.actbio.2017.03.006
97. Loughlin J, 2022, Translating osteoarthritis genetics research: 108. Zhang B, Gui X, Song P, et al., 2022, Three-dimensional
challenging times ahead. Trends Mol Med, 28:176–182. printing of large-scale, high-resolution bioceramics
https://doi.org/10.1016/j.molmed.2021.12.007 with micronano inner porosity and customized surface
characterization design for bone regeneration. ACS Appl
98. Huang Z, He Z, Kong Y, et al., 2020, Insight into Mater Interfaces, 14:8804–8815.
osteoarthritis through integrative analysis of metabolomics
and transcriptomics. Clin Chim Acta, 510:323–329. https://doi.org/10.1021/acsami.1c22868
https://doi.org/10.1016/j.cca.2020.07.010 109. Ye X, Li L, Lin Z, et al., 2018, Integrating 3D-printed PHBV/
calcium sulfate hemihydrate scaffold and chitosan hydrogel for
99. Jiang W, Liu H, Wan R, et al., 2021, Mechanisms linking enhanced osteogenic property. Carbohydr Polym, 202:106–114.
mitochondrial mechanotransduction and chondrocyte
biology in the pathogenesis of osteoarthritis. Ageing Res Rev, https://doi.org/10.1016/j.carbpol.2018.08.117
67:101315. 110. Ratheesh G, Shi MC, Lau P, et al., 2021, Effect of dual pore
https://doi.org/10.1016/j.arr.2021.101315 size architecture on in vitro osteogenic differentiation
in additively manufactured hierarchical scaffolds. ACS
100. Zhou Q, Cai Y, Jiang Y, et al., 2020, Exosomes in osteoarthritis Biomater Sci Eng, 7:2615–2626.
and cartilage injury: Advanced development and potential
therapeutic strategies. Int J Biol Sci, 16:1811–1820. https://doi.org/10.1021/acsbiomaterials.0c01719
https://doi.org/10.7150/ijbs.41637 111. Wang W, Xiong Y, Zhao R, et al., 2022, A novel hierarchical
biofunctionalized 3D-printed porous Ti6Al4V scaffold
101. Katz JN, Arant KR, Loeser RF, 2021, Diagnosis and with enhanced osteoporotic osseointegration through
treatment of hip and knee osteoarthritis: A review. JAMA, osteoimmunomodulation. J Nanobiotechnol, 20:68.
325:568–578.
https://doi.org/10.1186/s12951-022-01277-0
https://doi.org/10.1001/jama.2020.22171
112. Wang X, Li Z, Wang Z, et al., 2021, Incorporation of bone
102. Marshall M, Watt FE, Vincent TL, et al., 2018, Hand morphogenetic protein-2 and osteoprotegerin in 3D-printed
osteoarthritis: Clinical phenotypes, molecular mechanisms Ti6Al4V scaffolds enhances osseointegration under
and disease management. Nat Rev Rheumatol, 14:641–656. osteoporotic conditions. Front Bioeng Biotechnol, 9:754205.
https://doi.org/10.1038/s41584-018-0095-4
https://doi.org/10.3389/fbioe.2021.754205
103. O’Neill TW, McCabe PS, McBeth J, 2018, Update on
the epidemiology, risk factors and disease outcomes of 113. Cui Y, Wang Z, Li Z, et al., 2021, Functionalized anti-
osteoarthritis. Best Pract Res Clin Rheumatol, 32:312–326. osteoporosis drug delivery system enhances osseointegration
of an inorganic-organic bioactive interface in osteoporotic
https://doi.org/10.1016/j.berh.2018.10.007 microenvironment. Mater Des, 206:109753.
104. Ma L, Wang X, Zhou Y, et al., 2021, Biomimetic Ti-6Al-4V https://doi.org/10.1016/j.matdes.2021.109753
alloy/gelatin methacrylate hybrid scaffold with enhanced
osteogenic and angiogenic capabilities for large bone defect 114. Li Z, Bai H, Wang Z, et al., 2022, Ultrasound-mediated
restoration. Bioact Mater, 6:3437–3448. rapamycin delivery for promoting osseointegration of 3D
printed prosthetic interfaces via autophagy regulation in
https://doi.org/10.1016/j.bioactmat.2021.03.010 osteoporosis. Mater Des, 216:110586.
105. Wu N, Liu J, Ma W, et al., 2021, Degradable calcium deficient https://doi.org/10.1016/j.matdes.2022.110586
hydroxyapatite/poly(lactic-glycolic acid copolymer) bilayer
scaffold through integral molding 3D printing for bone 115. Benders KE, van Weeren PR, Badylak SF, et al., 2013,
defect repair. Biofabrication, 13:025005. Extracellular matrix scaffolds for cartilage and bone
regeneration. Trends Biotechnol, 31:169–176.
https://doi.org/10.1088/1758-5090/abcb48
https://doi.org/10.1016/j.tibtech.2012.12.004
Volume 9 Issue 4 (2023) 257 https://doi.org/10.18063/ijb.732

