Page 265 - IJB-9-4
P. 265

International Journal of Bioprinting                                     Applications of 3D printing in aging



               burden of disease 2010 study.  Ann Rheum Dis, 73:   106.  Van HD Liang B, Anania S, et al., 2022, 3D-printed synthetic
               1323–1330.                                         hydroxyapatite scaffold with in silico optimized macrostructure
                                                                  enhances bone formation in vivo. Adv Funct Mater, 32.
               https://doi.org/10.1136/annrheumdis-2013-204763
                                                                  https://doi.org/10.1002/adfm.202105002
            96.  Hiligsmann M, Cooper C, Arden N, et al., 2013, Health
               economics in the field of osteoarthritis: An expert’s   107. Guillaume O, Geven MA, Sprecher CM,  et  al., 2017,
               consensus paper from the European Society for Clinical   Surface-enrichment with hydroxyapatite nanoparticles in
               and Economic Aspects of Osteoporosis and Osteoarthritis   stereolithography-fabricated composite polymer scaffolds
               (ESCEO). Semin Arthritis Rheum, 43:303–313.        promotes bone repair. Acta Biomater, 54:386–398.
               https://doi.org/10.1016/j.semarthrit.2013.07.003   https://doi.org/10.1016/j.actbio.2017.03.006
            97.  Loughlin J, 2022, Translating osteoarthritis genetics research:   108. Zhang B, Gui X, Song P,  et al., 2022, Three-dimensional
               challenging times ahead. Trends Mol Med, 28:176–182.  printing of large-scale, high-resolution bioceramics
               https://doi.org/10.1016/j.molmed.2021.12.007       with micronano inner porosity and customized surface
                                                                  characterization  design  for  bone  regeneration.  ACS Appl
            98.  Huang Z, He Z, Kong Y,  et al., 2020, Insight into   Mater Interfaces, 14:8804–8815.
               osteoarthritis through integrative analysis of metabolomics
               and transcriptomics. Clin Chim Acta, 510:323–329.  https://doi.org/10.1021/acsami.1c22868
               https://doi.org/10.1016/j.cca.2020.07.010       109.  Ye X, Li L, Lin Z, et al., 2018, Integrating 3D-printed PHBV/
                                                                  calcium sulfate hemihydrate scaffold and chitosan hydrogel for
            99.  Jiang W, Liu H, Wan R, et al., 2021, Mechanisms linking   enhanced osteogenic property. Carbohydr Polym, 202:106–114.
               mitochondrial mechanotransduction and chondrocyte
               biology in the pathogenesis of osteoarthritis. Ageing Res Rev,   https://doi.org/10.1016/j.carbpol.2018.08.117
               67:101315.                                      110. Ratheesh G, Shi MC, Lau P, et al., 2021, Effect of dual pore
               https://doi.org/10.1016/j.arr.2021.101315          size architecture on in vitro osteogenic differentiation
                                                                  in additively manufactured hierarchical scaffolds.  ACS
            100. Zhou Q, Cai Y, Jiang Y, et al., 2020, Exosomes in osteoarthritis   Biomater Sci Eng, 7:2615–2626.
               and cartilage injury: Advanced development and potential
               therapeutic strategies. Int J Biol Sci, 16:1811–1820.  https://doi.org/10.1021/acsbiomaterials.0c01719
               https://doi.org/10.7150/ijbs.41637              111. Wang W, Xiong Y, Zhao R, et al., 2022, A novel hierarchical
                                                                  biofunctionalized 3D-printed porous Ti6Al4V scaffold
            101. Katz JN, Arant KR, Loeser RF, 2021, Diagnosis and   with enhanced osteoporotic osseointegration through
               treatment of hip and knee osteoarthritis: A review. JAMA,   osteoimmunomodulation. J Nanobiotechnol, 20:68.
               325:568–578.
                                                                  https://doi.org/10.1186/s12951-022-01277-0
               https://doi.org/10.1001/jama.2020.22171
                                                               112. Wang X, Li Z, Wang Z, et al., 2021, Incorporation of bone
            102. Marshall M, Watt FE, Vincent TL,  et al., 2018, Hand   morphogenetic protein-2 and osteoprotegerin in 3D-printed
               osteoarthritis: Clinical phenotypes, molecular mechanisms   Ti6Al4V scaffolds enhances osseointegration under
               and disease management. Nat Rev Rheumatol, 14:641–656.  osteoporotic conditions. Front Bioeng Biotechnol, 9:754205.
               https://doi.org/10.1038/s41584-018-0095-4
                                                                  https://doi.org/10.3389/fbioe.2021.754205
            103. O’Neill TW, McCabe PS, McBeth J, 2018, Update on
               the epidemiology, risk factors and disease outcomes of   113. Cui  Y,  Wang  Z,  Li  Z, et al.,  2021, Functionalized  anti-
               osteoarthritis. Best Pract Res Clin Rheumatol, 32:312–326.  osteoporosis drug delivery system enhances osseointegration
                                                                  of an inorganic-organic bioactive interface in osteoporotic
               https://doi.org/10.1016/j.berh.2018.10.007         microenvironment. Mater Des, 206:109753.
            104. Ma L, Wang X, Zhou Y, et al., 2021, Biomimetic Ti-6Al-4V   https://doi.org/10.1016/j.matdes.2021.109753
               alloy/gelatin methacrylate hybrid scaffold with enhanced
               osteogenic and angiogenic capabilities for large bone defect   114. Li Z, Bai H, Wang Z, et al., 2022, Ultrasound-mediated
               restoration. Bioact Mater, 6:3437–3448.            rapamycin delivery for promoting osseointegration of 3D
                                                                  printed prosthetic interfaces via autophagy regulation in
               https://doi.org/10.1016/j.bioactmat.2021.03.010    osteoporosis. Mater Des, 216:110586.
            105. Wu N, Liu J, Ma W, et al., 2021, Degradable calcium deficient   https://doi.org/10.1016/j.matdes.2022.110586
               hydroxyapatite/poly(lactic-glycolic acid copolymer) bilayer
               scaffold through integral molding 3D printing for bone   115. Benders KE, van Weeren PR, Badylak SF, et al., 2013,
               defect repair. Biofabrication, 13:025005.          Extracellular matrix scaffolds for cartilage and bone
                                                                  regeneration. Trends Biotechnol, 31:169–176.
               https://doi.org/10.1088/1758-5090/abcb48
                                                                  https://doi.org/10.1016/j.tibtech.2012.12.004

            Volume 9 Issue 4 (2023)                        257                         https://doi.org/10.18063/ijb.732
   260   261   262   263   264   265   266   267   268   269   270