Page 262 - IJB-9-4
P. 262

International Journal of Bioprinting                                     Applications of 3D printing in aging



            27.  Mowry SE, Jammal H, Myer Ct, et al., 2015, A novel temporal   38.  Cameron T, Naseri E, MacCallum B,  et al., 2020,
               bone simulation model using 3D printing techniques. Otol   Development of a disposable single-nozzle printhead for
               Neurotol, 36:1562–1565.                            3D  bioprinting  of  continuous  multi-material  constructs.
                                                                  Micromachines, 11(5):459.
               https://doi.org/10.1097/mao.0000000000000848
                                                                  https://doi.org/10.3390/mi11050459
            28.  Pucci JU, Christophe BR, Sisti JA,  et al., 2017, Three-
               dimensional printing: Technologies, applications, and   39.  Seiti M, Ginestra P, Ferraro RM, et al., 2020, Nebulized jet-
               limitations in neurosurgery. Biotechnol Adv, 35:521–529.  based printing of bio-electrical scaffolds for neural tissue
                                                                  engineering: A feasibility study. Biofabrication, 12:025024.
               https://doi.org/10.1016/j.biotechadv.2017.05.007
                                                                  https://doi.org/10.1088/1758-5090/ab71e0
            29.  Goyanes A, Allahham N, Trenfield SJ, et al., 2019, Direct
               powder extrusion 3D printing: Fabrication of drug products   40.  Suntornnond R, Ng WL, Huang X, et al., 2022, Improving
               using a novel  single-step  process.  Int J Pharmaceut,   printability of hydrogel-based bio-inks for thermal inkjet
               567:118471.                                        bioprinting applications via saponification and heat
                                                                  treatment processes. J Mater Chem B, 10:5989–6000.
               https://doi.org/10.1016/j.ijpharm.2019.118471
                                                                  https://doi.org/10.1039/d2tb00442a
            30.  La Gala A, Fiorio R, Ceretti DVA, et al., 2021, A combined
               experimental and modeling study for pellet-fed extrusion-  41.  Cui X, Dean D, Ruggeri ZM,  et al., 2010, Cell damage
               based additive manufacturing to evaluate the impact of the   evaluation of thermal inkjet printed Chinese hamster ovary
               melting efficiency. Materials, 14(19):5566.        cells. Biotechnol Bioeng, 106:963–969.
               https://doi.org/10.3390/ma14195566                 https://doi.org/10.1002/bit.22762
            31.  Xiong J, Wang H, Lan X, et al., 2022, Fabrication of bioinspired   42.  Popov  VK,  Evseev  AV,  Ivanov  AL, et al.,  2004,  Laser
               grid-crimp micropatterns by melt electrospinning writing   stereolithography and supercritical fluid processing for
               for bone-ligament interface study. Biofabrication, 14:025008.  custom-designed implant fabrication.  J Mater Sci Mater
               https://doi.org/10.1088/1758-5090/ac4ac8           Med, 15:123–128.
            32.  Su Y, Qiu T, Song W,  et  al., 2021, Melt electrospinning   https://doi.org/10.1023/b:jmsm.0000011812.08185.2a
               writing of magnetic microrobots. Adv Sci, 8:2003177.  43.  Xu X, Awad A, Robles-Martinez P, et al., 2021, Vat
               https://doi.org/10.1002/advs.202003177             photopolymerization  3D  printing  for  advanced  drug
                                                                  delivery and medical device applications.  J Controll
            33.  Schipani R, Scheurer S, Florentin R, et al., 2020, Reinforcing   Release, 329:743–757.
               interpenetrating network hydrogels with 3D printed
               polymer networks to engineer cartilage mimetic composites.   https://doi.org/10.1016/j.jconrel.2020.10.008
               Biofabrication, 12:035011.                      44.  Kim SH, Hong H, Ajiteru O, et al., 2021, 3D bioprinted
               https://doi.org/10.1088/1758-5090/ab8708           silk  fibroin hydrogels  for tissue  engineering.  Nat Protoc,
            34.  Coburn J, Gibson M, Bandalini PA, et al., 2011, Biomimetics   16:5484–5532.
               of the extracellular matrix: An integrated three-dimensional   https://doi.org/10.1038/s41596-021-00622-1
               fiber-hydrogel composite for cartilage tissue engineering.
               Smart Struct Syst, 7:213–222.                   45.  Song JX, Michas C, Chen CS, et al., 2020, From simple to
                                                                  architecturally complex hydrogel scaffolds for cell and tissue
               https://doi.org/10.12989/sss.2011.7.3.213          engineering applications: Opportunities presented by two-
            35.  Lewis JA, 2006, Direct ink writing of 3D functional materials.   photon polymerization. Adv Healthc Mater, 9:1901217.
               Adv Funct Mater, 16:2193–2204.                     https://doi.org/10.1002/adhm.201901217
               https://doi.org/10.1002/adfm.200600434          46.  Carlotti M, Mattoli V, 2019, Functional materials for two-
            36.  Qian F, Zhu C, Knipe JM, et al., 2019, Direct writing of   photon polymerization in microfabrication. Small, 15:1902687.
               tunable living inks for bioprocess intensification. Nano Lett,   https://doi.org/10.1002/smll.201902687
               19:5829–5835.
                                                               47.  Torgersen J, Qin X-H, Li Z,  et  al., 2013, Hydrogels for
               https://doi.org/10.1021/acs.nanolett.9b00066       two-photon polymerization: A toolbox for mimicking the
            37.  Grottkau BE, Hui ZX, Pang YG, 2020, A novel 3D bioprinter   extracellular matrix. Adv Funct Mater, 23:4542–4554.
               using direct-volumetric drop-on-demand technology for   https://doi.org/10.1002/adfm.201203880
               fabricating micro-tissues and drug-delivery.  Int J Mol Sci,
               21(10):3482.                                    48.  Ciuciu AI, Cywinski PJ, 2014, Two-photon polymerization
                                                                  of hydrogels—Versatile solutions to fabricate well-defined
               https://doi.org/10.3390/ijms21103482
                                                                  3D structures. Rsc Adv, 4:45504–45516.
                                                                  https://doi.org/10.1039/c4ra06892k

            Volume 9 Issue 4 (2023)                        254                         https://doi.org/10.18063/ijb.732
   257   258   259   260   261   262   263   264   265   266   267