Page 266 - IJB-9-4
P. 266

International Journal of Bioprinting                                     Applications of 3D printing in aging



            116. You F, Wu X, Zhu N, et al., 2016, 3D Printing  of porous   127. Liberale  L,  Montecucco  F,  Tardif  JC,  et al.,  2020,
               cell-laden hydrogel constructs for potential applications in   Inflamm-ageing: The role of inflammation in age-
               cartilage tissue engineering. ACS Biomater Sci Eng, 2:1200–  dependent  cardiovascular  disease.  Eur Heart J,  41:
               1210.                                              2974–2982.
               https://doi.org/10.1021/acsbiomaterials.6b00258    https://doi.org/10.1093/eurheartj/ehz961
            117. Rathan S, Dejob L, Schipani R, et al., 2019, Fiber reinforced   128. Jiang F, Yin K, Wu K, et al., 2021, The mechanosensitive Piezo1
               cartilage ECM functionalized bioinks for functional cartilage   channel mediates heart mechano-chemo transduction. Nat
               tissue engineering. Adv Healthc Mater, 8, e1801501.  Commun, 12:869.
               https://doi.org/10.1002/adhm.201801501             https://doi.org/10.1038/s41467-021-21178-4
            118. Guan J, Yuan FZ, Mao ZM, et al., 2021, Fabrication   129. Ritchie RH, Abel ED, 2020, Basic mechanisms of diabetic
               of 3D-printed interpenetrating hydrogel scaffolds for   heart disease. Circ Res, 126:1501–1525.
               promoting chondrogenic differentiation.  Polymers (Basel),   https://doi.org/10.1161/circresaha.120.315913
               13(13):2146.
                                                               130. Shirakabe A, Ikeda Y, Sciarretta S, et al., 2016, Aging and
               https://doi.org/10.3390/polym13132146              autophagy in the heart. Circ Res, 118:1563–1576.
            119. Visser J, Melchels FP, Jeon JE, et al., 2015, Reinforcement   https://doi.org/10.1161/circresaha.116.307474
               of hydrogels using three-dimensionally printed microfibres.   131. Ren J, Wu NN, Wang S, et al., 2021, Obesity cardiomyopathy:
               Nat Commun, 6:6933.
                                                                  Evidence, mechanisms, and therapeutic implications.
               https://doi.org/10.1038/ncomms7933                 Physiol Rev, 101:1745–1807.
            120. Weiming C, Yong X, Yaqiang L, et al., 2020, 3D printing   https://doi.org/10.1152/physrev.00030.2020
               electrospinning fiber-reinforced decellularized extracellular   132. Sun Z, 2015, Aging, arterial stiffness, and hypertension.
               matrix for cartilage regeneration. Chem Eng J, 382:122986.  Hypertension, 65:252–256.
               https://doi.org/10.1016/j.cej.2019.122986          https://doi.org/10.1161/hypertensionaha.114.03617
            121. Bas O, De-Juan-Pardo EM, et al., 2017, Biofabricated   133. Tracy EP, Hughes W, Beare JE, et al., 2021, Aging-induced
               soft network composites for cartilage tissue engineering.   impairment of vascular function: Mitochondrial redox
               Biofabrication, 9(2):025014.                       contributions and physiological/clinical implications.
               https://doi.org/10.1088/1758-5090/aa6b15           Antioxid Redox Signal, 35:974–1015.
            122. Mozaffarian  D,  Benjamin  EJ,  Go  AS,  et  al.,  2016,  Heart   https://doi.org/10.1089/ars.2021.0031
               disease and stroke statistics-2016 update: A report from the   134. Donato AJ, Machin DR, Lesniewski LA, 2018, Mechanisms
               American Heart Association. Circulation, 133, e38–e360.  of dysfunction in the aging vasculature and role in age-
               https://doi.org/10.1161/cir.0000000000000350       related disease. Circ Res, 123:825–848.
            123. Go AS, Mozaffarian D, Roger VL, et al., 2014, Heart disease   https://doi.org/10.1161/circresaha.118.312563
               and stroke statistics--2014 update: A report from the   135. Ungvari Z, Tarantini S, Donato AJ, et al., 2018, Mechanisms
               American Heart Association. Circulation, 129, e28–e292.  of vascular aging. Circ Res, 123:849–867.
               https://doi.org/10.1161/01.cir.0000441139.02102.80  https://doi.org/10.1161/circresaha.118.311378
            124.  Leong DP, Joseph PG, McKee M, et al., 2017, Reducing the   136. Harvey  A,  Montezano  AC,  Lopes  RA,  et al., 2016,
               global burden of cardiovascular disease, Part 2: Prevention and   Vascular fibrosis in aging and hypertension: Molecular
               treatment of cardiovascular disease. Circ Res, 121:695–710.  mechanisms and clinical implications.  Can J Cardiol, 32:
               https://doi.org/10.1161/circresaha.117.311849      659–668.
            125. Rumsfeld JS, Alexander KP, Goff DC, et al., 2013,   https://doi.org/10.1016/j.cjca.2016.02.070
               Cardiovascular health: The importance of measuring patient-  137. Jia G, Aroor AR, Jia C, et al., 2019, Endothelial cell senescence
               reported health status: A scientific statement from the   in aging-related vascular dysfunction. Biochim Biophys Acta
               American Heart Association. Circulation, 127:2233–2249.  Mol Basis Dis, 1865:1802–1809.
               https://doi.org/10.1161/CIR.0b013e3182949a2e       https://doi.org/10.1016/j.bbadis.2018.08.008
            126. Oliveira  GMM, Brant  LCC, Polanczyk CA, et al., 2022,   138. El Assar M, Angulo J, Rodríguez-Mañas L, 2013, Oxidative
               Cardiovascular Statistics—Brazil 2021.  Arq Brasil Cardiol,   stress and vascular inflammation in aging. Free Radic Biol
               118:115–372.                                       Med, 65:380–401.
               https://doi.org/10.36660/abc.20211012              https://doi.org/10.1016/j.freeradbiomed.2013.07.003

            Volume 9 Issue 4 (2023)                        258                         https://doi.org/10.18063/ijb.732
   261   262   263   264   265   266   267   268   269   270   271