Page 279 - IJB-9-4
P. 279
International Journal of Bioprinting 3D acoustically assembled cell spheroids with high-throughput
37. Olofsson K, Carannante V, Ohlin M, et al., 2018, Acoustic 45. Chansoria P, Narayanan LK, Schuchard K, et al., 2019,
formation of multicellular tumor spheroids enabling on- Ultrasound-assisted biofabrication and bioprinting of
chip functional and structural imaging. Lab Chip, 18(16): preferentially aligned three-dimensional cellular constructs.
2466–2476. Biofabrication, 11:035015.
https://doi.org/10.1039/c8lc00537k https://doi.org/10.1088/1758-5090/ab15cf
38. Chen B, Wu Y, Ao Z, et al., 2019, High-throughput 46. Wu Z, Jiang H, Zhang L, et al., 2019, The acoustofluidic
acoustofluidic fabrication of tumor spheroids. Lab Chip, focusing and separation of rare tumor cells using
19(10):1755–1763. transparent lithium niobate transducers. Lab Chip, 19(23):
https://doi.org/10.1039/c9lc00135b 3922–3930.
39. Armstrong JPK, Maynard SA, Pence IJ, et al., 2019, https://doi.org/10.1039/c9lc00874h
Spatiotemporal quantification of acoustic cell patterning 47. Jeger-Madiot N, Arakelian L, Setterblad N, et al., 2021,
using Voronoï tessellation. Lab Chip, 19(4):562–573. Self-organization and culture of mesenchymal stem cell
https://doi.org/10.1039/C8LC01108G spheroids in acoustic levitation. Sci Rep, 11(1):8355.
40. Bouyer C, Chen P, Guven S, et al., 2016, A bio-acoustic https://doi.org/10.1038/s41598-021-87459-6
levitational (BAL) assembly method for engineering of 48. Cai H, Ao Z, Hu L, et al., 2020, Acoustofluidic assembly of
multilayered, 3D brain-like constructs, using human 3D neurospheroids to model Alzheimer’s disease. Analyst,
embryonic stem cell derived neuro-progenitors. Adv Mater, 145(19):6243–6253.
28(1):161–167.
https://doi.org/10.1039/d0an01373k
https://doi.org/10.1002/adma.201503916
49. Ying G, Jiang N, Yu C, et al., 2018, Three-dimensional
41. Sriphutkiat Y, Kasetsirikul S, Zhou YF, 2018, Formation of
cell spheroids using standing surface acoustic wave (SSAW). bioprinting of gelatin methacryloyl (GelMA). Bio-Des
Int J Bioprint, 4(1):130. Manuf, 1(4):215–224.
http://dx.doi.org/10.18063/IJB.v4i1.130 https://doi.org/10.1007/s42242-018-0028-8
42. Wu Z, Chen B, Wu Y, et al., 2021, Scaffold-free generation of 50. Wei X, Huang B, Chen K, et al., 2022, Dot extrusion
heterotypic cell spheroids using acoustofluidics. Lab Chip, bioprinting of spatially controlled heterogenous tumor
21(18):3498–3508. models. Mater Design, 223:111152.
https://doi.org/10.1039/d1lc00496d https://doi.org/10.1016/j.matdes.2022.111152
43. Wu Y, Ao Z, Bin C, et al., 2018, Acoustic assembly of 51. Xu J, Ji L, Liang Y, et al., 2020, CircRNA-SORE mediates
cell spheroids in disposable capillaries. Nanotechnology, sorafenib resistance in hepatocellular carcinoma by
29(50):504006. stabilizing YBX1. Signal Transduct Tar, 5:298.
https://doi.org/10.1088/1361-6528/aae4f1 https://doi.org/10.1038/s41392-020-00375-5
44. Hu X, Zhao S, Luo Z, et al., 2020, On-chip hydrogel arrays 52. Nishikawa H, Nishijima N, Enomoto H, et al., 2017,
individually encapsulating acoustic formed multicellular Prognostic significance of sarcopenia in patients with
aggregates for high throughput drug testing. Lab Chip, hepatocellular carcinoma undergoing sorafenib therapy.
20(12):2228–2236. Oncol Lett, 14(2):1637–1647.
https://doi.org/10.1039/d0lc00255k https://doi.org/10.3892/ol.2017.6287
Volume 9 Issue 4 (2023) 271 https://doi.org/10.18063/ijb.733

