Page 278 - IJB-9-4
P. 278

International Journal of Bioprinting                 3D acoustically assembled cell spheroids with high-throughput



            14.  Daly AC, Davidson MD, Burdick JA, 2021, 3D bioprinting   26.  He H, He Q, Xu F, et al., 2019, Dynamic formation of cellular
               of  high  cell-density heterogeneous  tissue  models  through   aggregates of chondrocytes and mesenchymal stem cells in
               spheroid fusion within self-healing hydrogels. Nat Commun,   spinner flask. Cell Proliferat, 52(4):e12587.
               12(1):753.
                                                                  https://doi.org/10.1111/cpr.12587
               https://doi.org/10.1038/s41467-021-21029-2
                                                               27.  Curcio E, Salerno S, Barbieri G, et al., 2007, Mass transfer
            15.  Li L, Chen Y, Wang H, et al., 2021, A high-throughput, open-  and metabolic reactions in hepatocyte spheroids cultured in
               space and reusable microfluidic chip for combinational drug   rotating wall gas-permeable membrane system. Biomaterials,
               screening on tumor spheroids. Lab Chip, 21(20):3924–3932.  28(36):5487–5497.
               https://doi.org/10.1039/d1lc00525a                 https://doi.org/10.1016/j.biomaterials.2007.08.033
            16.  Singh SK, Abbas S, Saxena AK,  et al., 2020, Critical role   28.  Napolitano AP, Dean DM, Man AJ, et al., 2007, Scaffold-
               of three-dimensional tumorsphere size on experimental   free three-dimensional cell culture utilizing micromolded
               outcome. BioTechniques, 69(5):333–338.             nonadhesive hydrogels. BioTechniques, 43(4):494, 496–500.
               https://doi.org/10.2144/btn-2020-0081              https://doi.org/10.2144/000112591
            17.  Pyo DH, Hong HK, Lee WY, et al., 2020, Patient-derived   29.  Wu Y, Zhou Y, Qin X,  et al., 2021, From cell spheroids
               cancer modeling for precision medicine in colorectal cancer:   to vascularized cancer organoids: Microfluidic  tumor-
               Beyond the cancer cell line. Cancer Biol Ther, 21(6):495–502.  on-a-chip  models  for  preclinical  drug  evaluations.
               https://doi.org/10.1080/15384047.2020.1738907      Biomicrofluidics, 15(6):061503.
            18.  Brassard JA, Nikolaev M, Hubscher T,  et al., 2021,   https://doi.org/10.1063/5.0062697
               Recapitulating macro-scale tissue self-organization through   30.  Prince E, Kheiri S, Wang Y, et al., 2022, Microfluidic arrays of
               organoid bioprinting. Nat Mater, 20(1):22–29.      breast tumor spheroids for drug screening and personalized
               https://doi.org/10.1038/s41563-020-00803-5         cancer therapies. Adv Healthc Mater, 11(1):e2101085.
            19.  Han SJ, Kwon S, Kim KS, 2021, Challenges of applying   https://doi.org/10.1002/adhm.202101085
               multicellular tumor spheroids in preclinical phase. Cancer   31.  Yin  F,  Zhang  X,  Wang  L,  et al.,  2021,  HiPSC-derived
               Cell Int, 21(1):152.
                                                                  multi-organoids-on-chip system for safety assessment of
               https://doi.org/10.1186/s12935-021-01853-8         antidepressant drugs. Lab Chip, 21(3):571–581.
            20.  Feng L, Liang S, Zhou Y, et al, 2020, Three-dimensional printing   https://doi.org/10.1039/d0lc00921k
               of hydrogel scaffolds with hierarchical structure for scalable
               stem cell culture. ACS Biomater Sci Eng, 6(5):2995–3004.  32.  Albrecht DR, Underhill GH, Wassermann TB, et al., 2006,
                                                                  Probing the role of multicellular organization in three-
               https://doi.org/10.1021/acsbiomaterials.9b01825    dimensional microenvironments.  Nat Methods, 3(5):
            21.  Shen H, Cai S, Wu C, et al., 2021, Recent advances in three-  369–375.
               dimensional multicellular spheroid culture and future   https://doi.org/10.1038/nmeth873
               development. Micromachines, 12(1):96.
                                                               33.  Tocchio A, Durmus NG, Sridhar K, et al., 2018, Magnetically
               https://doi.org/10.3390/mi12010096                 guided self-assembly and coding of 3D living architectures.
            22.  Ryu NE, Lee SH, Park H, 2019, Spheroid culture system   Adv Mater, 30(4):1705034.
               methods and applications for mesenchymal stem cells. Cells,   https://doi.org/10.1002/adma.201705034
               8(12):1620.
                                                               34.  Parfenov VA, Koudan EV, Bulanova EA, et al., 2018, Scaffold-
               https://doi.org/10.3390/cells8121620               free, label-free and nozzle-free biofabrication technology
            23.  Rodrigues T, Kundu B, Silva-Correia J, et al., 2018, Emerging   using magnetic levitational assembly. Biofabrication,
               tumor spheroids technologies for 3D in vitro cancer   10(3):034104.
               modeling. Pharmacol Therapeut, 184:201–211.        https://doi.org/10.1088/1758-5090/aac900
               https://doi.org/10.1016/j.pharmthera.2017.10.018
                                                               35.  Souza GR, Molina JR, Raphael RM,  et al., 2010, Three-
            24.  Foty R, 2011, A simple hanging drop cell culture protocol for   dimensional tissue culture based on magnetic cell levitation.
               generation of 3D spheroids. J Vis Exp, 51:e2720.   Nat Nanotechnol, 5(4):291–296.
               https://doi.org/10.3791/2720                       https://doi.org/10.1038/nnano.2010.23
            25.  Tung YC, Hsiao AY, Allen SG, et al., 2011, High-throughput   36.  Chen  K,  Wu  M,  Guo  F,  et al.,  2016,  Rapid  formation  of
               3D spheroid culture and drug testing using a 384 hanging   size-controllable multicellular spheroids via 3D acoustic
               drop array. Analyst, 136(3):473–478.               tweezers. Lab Chip, 16(14):2636–2643.
               https://doi.org/10.1039/c0an00609b                 https://doi.org/10.1039/c6lc00444j


            Volume 9 Issue 4 (2023)                        270                         https://doi.org/10.18063/ijb.733
   273   274   275   276   277   278   279   280   281   282   283