Page 55 - IJB-9-4
P. 55

International Journal of Bioprinting             3D-Bioprinted human lipoaspirate-derived cell-laden skin constructs



            51.  Wang N, Liu H, Li X, et al., 2017, Activities of MSCs derived   62.  Guilak F, Cohen DM, Estes BT,  et al., 2009, Control of
               from transgenic mice seeded on ADM scaffolds in wound   stem cell fate by physical interactions with the extracellular
               healing and assessment by advanced optical techniques. Cell   matrix. Cell Stem Cell, 5(1):17–26.
               Physiol Biochem, 42(2):623–639.
                                                                  https://doi.org/10.1016/j.stem.2009.06.016
               https://doi.org/10.1159/000477872
                                                               63.  Xu Y, Deng M, Cai Y,  et al., 2020, Cell-free fat extract
            52.  Rousselle P, Montmasson M, Garnier C, 2019, Extracellular   increases dermal thickness by enhancing angiogenesis and
               matrix contribution to skin wound re-epithelialization.   extracellular matrix production in nude mice. Aesthet Surg J,
               Matrix Biol, 75–76:12–26.                          40(8):904–913.
               https://doi.org/10.1016/j.matbio.2018.01.002       https://doi.org/10.1093/asj/sjz306
            53.  Li ZJ, Wang LQ, Li YZ, et al., 2021, Application of adipose-  64.  Mazini L, Rochette L, Admou B,  et al., 2020, Hopes
               derived stem cells in treating fibrosis. World J Stem Cells,   and limits of adipose-derived stem cells (ADSCs) and
               13(11):1747–1761.                                  mesenchymal stem cells (MSCs) in wound healing. Int J Mol
               https://doi.org/10.4252/wjsc.v13.i11.1747          Sci, 21(4):1306.
            54.  Ibañez  RIR,  do  Amaral  RJFC,  Reis  RL,  et al.,  2021,   https://doi.org/10.3390/ijms21041306
               3D-printed gelatin methacrylate scaffolds with controlled   65.  Zhang P, Zhang C, Li J,  et  al., 2019, The physical
               architecture and stiffness modulate the fibroblast phenotype   microenvironment of hematopoietic stem cells and its
               towards dermal regeneration. Polymers (Basel), 13(15):2510.  emerging roles in engineering applications.  Stem Cell Res
               https://doi.org/10.3390/polym13152510              Ther, 10(1):327.
            55.  Pati F, Ha D-H, Jang J, et al., 2015, Biomimetic 3D tissue   https://doi.org/10.1186/s13287-019-1422-7
               printing for soft tissue regeneration.  Biomaterials, 62:   66.  Zhou X, Wang J, Huang X,  et al., 2018, Injectable
               164–175.                                           decellularized nucleus pulposus-based cell delivery system
               https://doi.org/10.1016/j.biomaterials.2015.05.043  for differentiation of adipose-derived stem cells and nucleus
                                                                  pulposus regeneration. Acta Biomater, 81:115–128.
            56.  Baron JM, Glatz M, Proksch E, 2020, Optimal support of
               wound healing: New insights. Dermatology, 236(6):593–600.  https://doi.org/10.1016/j.actbio.2018.09.044
               https://doi.org/10.1159/000505291               67.  Xiao Y, Peng J, Liu Q,  et al., 2020, Ultrasmall CuS@
                                                                  BSA nanoparticles  with mild photothermal conversion
            57.  Leavitt T, Hu MS, Marshall CD, et al., 2016, Scarless wound
               healing: Finding the right cells and signals. Cell Tissue Res,   synergistically  induce  MSCs-differentiated  fibroblast  and
               365(3):483–493.                                    improve skin regeneration. Theranostics, 10(4):1500–1513.
               https://doi.org/10.1007/s00441-016-2424-8          https://doi.org/10.7150/thno.39471
            58.  Sorg H, Tilkorn DJ, Mirastschijski U, et al., 2018, Panta rhei:   68.  An  R,  Zhang  Y,  Qiao  Y,  et al.,  2020,  Adipose  stem  cells
               Neovascularization, angiogenesis and nutritive perfusion in   isolated from diabetic mice improve cutaneous wound
               wound healing. Eur Surg Res, 59(3–4):232–241.      healing in streptozotocin-induced diabetic mice. Stem Cell
                                                                  Res Ther, 11(1):120.
               https://doi.org/10.1159/000492410
                                                                  https://doi.org/10.1186/s13287-020-01621-x
            59.  DiPietro LA, 2016, Angiogenesis and wound repair: When
               enough is enough. J Leukoc Biol, 100(5):979–984.  69.  Liubaviciute A, Kaseta V, Vaitkuviene A,  et al., 2018,
                                                                  Regenerative  potential  of  partially  differentiated
               https://doi.org/10.1189/jlb.4MR0316-102R           mesenchymal stromal cells in a mouse model of a full-
            60.  Diller  RB,  Tabor AJ, 2022,  The role  of the extracellular   thickness skin wound. Excl J, 17:871–888.
               matrix  (ECM) in  wound healing:  A review.  Biomimetics   https://doi.org/10.17179/excli2018-1504
               (Basel), 7(3):87.
                                                               70.  Dos  Santos JF, Borcari NR, Silva  Araujo,  et al., 2019,
               https://doi.org/10.3390/biomimetics7030087         Mesenchymal stem cells differentiate into keratinocytes and
            61.  Moffat D, Ye K, Jin S, 2022, Decellularization for the retention   express epidermal kallikreins: Towards an in vitro model of
               of tissue niches. J Tissue Eng, 13:20417314221101151.  human epidermis. J Cell Biochem, 120(8):13141–13155.
               https://doi.org/10.1177/20417314221101151          https://doi.org/10.1002/jcb.28589









            Volume 9 Issue 4 (2023)                         47                          https://doi.org/10.18063/ijb.718
   50   51   52   53   54   55   56   57   58   59   60