Page 53 - IJB-9-4
P. 53
International Journal of Bioprinting 3D-Bioprinted human lipoaspirate-derived cell-laden skin constructs
8. Niu C, Wang L, Ji D, et al., 2022, Fabrication of SA/Gel/C 19. Chaudhuri O, Cooper-White J, Janmey PA, et al., 2020,
scaffold with 3D bioprinting to generate micro-nano Effects of extracellular matrix viscoelasticity on cellular
porosity structure for skin wound healing: A detailed animal behaviour. Nature, 584(7822):535–546.
in vivo study. Cell Regen, 11(1):10.
https://doi.org/10.1038/s41586-020-2612-2
https://doi.org/10.1186/s13619-022-00113-y
20. Frantz C, Stewart KM, Weaver VM, 2010, The extracellular
9. Pontiggia L, Van Hengel IA, Klar A, et al., 2022, Bioprinting matrix at a glance. J Cell Sci, 123(Pt 24):4195–4200.
and plastic compression of large pigmented and vascularized https://doi.org/10.1242/jcs.023820
human dermo-epidermal skin substitutes by means of a new
robotic platform. J Tissue Eng, 13:20417314221088513. 21. Ventura RD, Padalhin AR, Park CM, et al., 2019, Enhanced
decellularization technique of porcine dermal ECM for
https://doi.org/10.1177/20417314221088513 tissue engineering applications. Mater Sci Eng C Mater Biol
10. Michael S, Sorg H, Peck CT, et al., 2013, Tissue engineered Appl, 104:109841.
skin substitutes created by laser-assisted bioprinting form https://doi.org/10.1016/j.msec.2019.109841
skin-like structures in the dorsal skin fold chamber in mice.
PLoS One, 8(3):e57741. 22. Saldin LT, Cramer MC, Velankar SS, et al., 2017, Extracellular
matrix hydrogels from decellularized tissues: Structure and
https://doi.org/10.1371/journal.pone.0057741 function. Acta Biomater. 49:1–15.
11. Ng WL, Qi JTZ, Yeong WY, et al., 2018, Proof-of-concept: https://doi.org/10.1016/j.actbio.2016.11.068
3D bioprinting of pigmented human skin constructs.
Biofabrication, 10(2):025005. 23. Panwar A, Tan LP, 2016, Current status of bioinks for micro-
extrusion-based 3D bioprinting. Molecules, 21(6):685.
https://doi.org/10.1088/1758-5090/aa9e1e
https://doi.org/10.3390/molecules21060685
12. Zhang Y, Enhejirigala, Yao B, et al., 2021, Using bioprinting
and spheroid culture to create a skin model with sweat 24. Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015,
glands and hair follicles. Burns Trauma, 9:tkab013. Synthesis, properties, and biomedical applications of gelatin
methacryloyl (GelMA) hydrogels. Biomaterials, 73:254–271.
https://doi.org/10.1093/burnst/tkab013
https://doi.org/10.1016/j.biomaterials.2015.08.045
13. Albanna M, Binder KW, Murphy SV, et al., 2019, In situ
bioprinting of autologous skin cells accelerates wound 25. Zhai P, Peng X, Li B, et al., 2020, The application of
hyaluronic acid in bone regeneration. Int J Biol Macromol,
healing of extensive excisional full-thickness wounds. Sci 151:1224–1239.
Rep, 9(1):1856.
https://doi.org/10.1016/j.ijbiomac.2019.10.169
https://doi.org/10.1038/s41598-018-38366-w
26. Dung TN, Han VD, Tien GN, et al., 2021, Autologous
14. Jorgensen AM, Varkey M, Gorkun A, et al., 2020, Bioprinted adipose-derived stem cell (ADSC) transplantation in the
skin recapitulates normal collagen remodeling in full- management of chronic wounds. Ann Burns Fire Disasters,
thickness wounds. Tissue Eng Part A, 26(9-10):512–526.
34(4):343–350.
https://doi.org/10.1089/ten.TEA.2019.0319 27. Tanios E, Ahmed TM, Shafik EA, et al., 2021, Efficacy
15. He P, Zhao J, Zhang J, et al., 2018, Bioprinting of skin of adipose-derived stromal vascular fraction cells in the
constructs for wound healing. Burns Trauma, 6:5. management of chronic ulcers: A randomized clinical trial.
Regen Med, 16(11):975–988.
https://doi.org/10.1186/s41038-017-0104-x
https://doi.org/10.2217/rme-2020-0207
16. Raziyeva K, Kim Y, Zharkinbekov Z, et al., 2021, Immunology
of acute and chronic wound healing . Biomolecules, 28. Zhang J, Liu Y, Chen Y, et al., 2020, Adipose-derived stem
11(5):700. cells: Current applications and future directions in the
regeneration of multiple tissues. Stem Cells Int, 2020:8810813.
https://doi.org/10.3390/biom11050700
https://doi.org/10.1155/2020/8810813
17. Rodrigues M, Kosaric N, Bonham CA, et al., 2019, Wound
healing: A cellular perspective. Physiol Rev, 99(1):665–706. 29. Sivan U, Jayakumar K, Krishnan LK, 2014, Constitution of
fibrin-based niche for in vitro differentiation of adipose-
https://doi.org/10.1152/physrev.00067.2017 derived mesenchymal stem cells to keratinocytes. Biores
18. Shaik S, Wu X, Gimble JM, et al., 2020, Non-toxic freezing Open Access, 3(6):339–347.
media to retain the stem cell reserves in adipose tissues. https://doi.org/10.1089/biores.2014.0036
Cryobiology, 96:137–144.
30. Hutchings G, Janowicz K, Moncrieff L, et al., 2020, The
https://doi.org/10.1016/j.cryobiol.2020.07.005 proliferation and differentiation of adipose-derived stem
Volume 9 Issue 4 (2023) 45 https://doi.org/10.18063/ijb.718

