Page 53 - IJB-9-4
        P. 53
     International Journal of Bioprinting             3D-Bioprinted human lipoaspirate-derived cell-laden skin constructs
            8.   Niu C, Wang L, Ji D, et al., 2022, Fabrication of SA/Gel/C   19.  Chaudhuri O, Cooper-White J, Janmey PA,  et al., 2020,
               scaffold with 3D bioprinting to generate micro-nano   Effects  of  extracellular matrix viscoelasticity on  cellular
               porosity structure for skin wound healing: A detailed animal   behaviour. Nature, 584(7822):535–546.
               in vivo study. Cell Regen, 11(1):10.
                                                                  https://doi.org/10.1038/s41586-020-2612-2
               https://doi.org/10.1186/s13619-022-00113-y
                                                               20.  Frantz C, Stewart KM, Weaver VM, 2010, The extracellular
            9.   Pontiggia L, Van Hengel IA, Klar A, et al., 2022, Bioprinting   matrix at a glance. J Cell Sci, 123(Pt 24):4195–4200.
               and plastic compression of large pigmented and vascularized   https://doi.org/10.1242/jcs.023820
               human dermo-epidermal skin substitutes by means of a new
               robotic platform. J Tissue Eng, 13:20417314221088513.  21.  Ventura RD, Padalhin AR, Park CM, et al., 2019, Enhanced
                                                                  decellularization technique  of porcine  dermal  ECM  for
               https://doi.org/10.1177/20417314221088513          tissue engineering applications. Mater Sci Eng C Mater Biol
            10.  Michael S, Sorg H, Peck CT, et al., 2013, Tissue engineered   Appl, 104:109841.
               skin substitutes created by laser-assisted bioprinting form   https://doi.org/10.1016/j.msec.2019.109841
               skin-like structures in the dorsal skin fold chamber in mice.
               PLoS One, 8(3):e57741.                          22.  Saldin LT, Cramer MC, Velankar SS, et al., 2017, Extracellular
                                                                  matrix hydrogels from decellularized tissues: Structure and
               https://doi.org/10.1371/journal.pone.0057741       function. Acta Biomater. 49:1–15.
            11.  Ng WL, Qi JTZ, Yeong WY, et al., 2018, Proof-of-concept:   https://doi.org/10.1016/j.actbio.2016.11.068
               3D bioprinting of pigmented human skin constructs.
               Biofabrication, 10(2):025005.                   23.  Panwar A, Tan LP, 2016, Current status of bioinks for micro-
                                                                  extrusion-based 3D bioprinting. Molecules, 21(6):685.
               https://doi.org/10.1088/1758-5090/aa9e1e
                                                                  https://doi.org/10.3390/molecules21060685
            12.  Zhang Y, Enhejirigala, Yao B, et al., 2021, Using bioprinting
               and spheroid  culture  to create a  skin model with  sweat   24.  Yue K, Trujillo-de Santiago G, Alvarez MM,  et al., 2015,
               glands and hair follicles. Burns Trauma, 9:tkab013.  Synthesis, properties, and biomedical applications of gelatin
                                                                  methacryloyl (GelMA) hydrogels. Biomaterials, 73:254–271.
               https://doi.org/10.1093/burnst/tkab013
                                                                  https://doi.org/10.1016/j.biomaterials.2015.08.045
            13.  Albanna M, Binder KW, Murphy SV,  et al., 2019, In situ
               bioprinting of autologous skin cells accelerates wound   25.  Zhai  P,  Peng  X,  Li  B,  et al.,  2020,  The  application  of
                                                                  hyaluronic acid in bone regeneration. Int J Biol Macromol,
               healing of extensive excisional full-thickness wounds.  Sci   151:1224–1239.
               Rep, 9(1):1856.
                                                                  https://doi.org/10.1016/j.ijbiomac.2019.10.169
               https://doi.org/10.1038/s41598-018-38366-w
                                                               26.  Dung TN, Han VD, Tien GN,  et al., 2021, Autologous
            14.  Jorgensen AM, Varkey M, Gorkun A, et al., 2020, Bioprinted   adipose-derived stem cell (ADSC) transplantation in the
               skin recapitulates normal collagen remodeling in full-  management of chronic wounds. Ann Burns Fire Disasters,
               thickness wounds. Tissue Eng Part A, 26(9-10):512–526.
                                                                  34(4):343–350.
               https://doi.org/10.1089/ten.TEA.2019.0319       27.  Tanios E, Ahmed TM, Shafik EA,  et al., 2021, Efficacy
            15.  He P, Zhao J, Zhang J,  et al., 2018, Bioprinting of skin   of adipose-derived stromal vascular fraction cells in the
               constructs for wound healing. Burns Trauma, 6:5.   management of chronic ulcers: A randomized clinical trial.
                                                                  Regen Med, 16(11):975–988.
               https://doi.org/10.1186/s41038-017-0104-x
                                                                  https://doi.org/10.2217/rme-2020-0207
            16.  Raziyeva K, Kim Y, Zharkinbekov Z, et al., 2021, Immunology
               of acute and chronic  wound healing .  Biomolecules,   28.  Zhang J, Liu Y, Chen Y, et al., 2020, Adipose-derived stem
               11(5):700.                                         cells:  Current  applications  and  future  directions  in  the
                                                                  regeneration of multiple tissues. Stem Cells Int, 2020:8810813.
               https://doi.org/10.3390/biom11050700
                                                                  https://doi.org/10.1155/2020/8810813
            17.  Rodrigues M, Kosaric N, Bonham CA, et al., 2019, Wound
               healing: A cellular perspective. Physiol Rev, 99(1):665–706.  29.  Sivan U, Jayakumar K, Krishnan LK, 2014, Constitution of
                                                                  fibrin-based niche for in vitro differentiation of adipose-
               https://doi.org/10.1152/physrev.00067.2017         derived mesenchymal stem cells to keratinocytes.  Biores
            18.  Shaik S, Wu X, Gimble JM, et al., 2020, Non-toxic freezing   Open Access, 3(6):339–347.
               media to retain the stem cell reserves in adipose tissues.   https://doi.org/10.1089/biores.2014.0036
               Cryobiology, 96:137–144.
                                                               30.  Hutchings G, Janowicz K, Moncrieff L,  et al., 2020, The
               https://doi.org/10.1016/j.cryobiol.2020.07.005     proliferation and differentiation of adipose-derived stem
            Volume 9 Issue 4 (2023)                         45                          https://doi.org/10.18063/ijb.718
     	
