Page 135 - IJB-9-5
P. 135
International Journal of Bioprinting DLP-printed scaffold for bone regeneration
31. Cui J, Yu X, Yu B, et al., 2022, Coaxially fabricated dual- 41. Hong Y, Zhou F, Hua Y, et al., 2019, A strongly adhesive
drug loading electrospinning fibrous mat with programmed hemostatic hydrogel for the repair of arterial and heart
releasing behavior to boost vascularized bone regeneration. bleeds. Nat Commun, 10(1): 2060.
Adv Healthc Mater, 11(16): e2200571.
https://doi.org/10.1038/s41467-019-10004-7
https://doi.org/10.1002/adhm.202200571
42. Gao Q, Niu X, Shao L, et al., 2019, 3D printing of complex
32. Han X, Sun M, Chen B, et al., 2021, Lotus seedpod-inspired GelMA-based scaffolds with nanoclay. Biofabrication, 11(3):
internal vascularized 3D printed scaffold for bone tissue 035006.
repair. Bioact Mater, 6(6): 1639–1652.
https://doi.org/10.1088/1758-5090/ab0cf6
https://doi.org/10.1016/j.bioactmat.2020.11.019
43. Ratheesh G, Vaquette C, Xiao Y, 2020, Patient-specific
33. Donneys A, Yang Q, Forrest ML, et al., 2019, Implantable bone particles bioprinting for bone tissue engineering. Adv
hyaluronic acid-deferoxamine conjugate prevents Healthc Mater, 9(23): e2001323.
nonunions through stimulation of neovascularization. NPJ
Regen Med, 4: 11. https://doi.org/10.1002/adhm.202001323
https://doi.org/10.1038/s41536-019-0072-9 44. Gao J, Ding X, Yu X, et al., 2021, Cell-free bilayered porous
scaffolds for osteochondral regeneration fabricated by
34. Yao Q, Liu Y, Selvaratnam B, et al., 2018, Mesoporous silicate continuous 3D-printing using nascent physical hydrogel as
nanoparticles/3D nanofibrous scaffold-mediated dual-drug ink. Adv Healthc Mater, 10(3): e2001404.
delivery for bone tissue engineering. J Control Release, 279:
69–78. https://doi.org/10.1002/adhm.202001404
https://doi.org/10.1016/j.jconrel.2018.04.011 45. Zhu T, Cui Y, Zhang M, et al., 2020, Engineered three-
dimensional scaffolds for enhanced bone regeneration in
35. Drager J, Sheikh Z, Zhang YL, et al., 2016, Local delivery osteonecrosis. Bioact Mater, 5(3): 584–601.
of iron chelators reduces in vivo remodeling of a calcium
phosphate bone graft substitute. Acta Biomater, 42: 411–419. https://doi.org/10.1016/j.bioactmat.2020.04.008
https://doi.org/10.1016/j.actbio.2016.07.037 46. Zhu T, Jiang M, Zhang M, et al., 2022, Construction and
validation of steroid-induced rabbit osteonecrosis model.
36. Liu Z, Zhang J, Fu C, et al., 2023, Osteoimmunity-regulating
biomaterials promote bone regeneration. Asian J Pharm Sci, MethodsX, 9: 101713.
18(1): 100774. https://doi.org/10.1016/j.mex.2022.101713
https://doi.org/10.1016/j.ajps.2023.100774 47. Zhu T, Jiang M, Zhang M, et al., 2022, Biofunctionalized
37. Sun LL, Ma YF, Niu HY, et al., 2021, Recapitulation of in composite scaffold to potentiate osteoconduction,
situ endochondral ossification using an injectable hypoxia- angiogenesis, and favorable metabolic microenvironment
mimetic hydrogel. Adv Funct Mater, 31(5). for osteonecrosis therapy. Bioact Mater, 9: 446–460.
https://doi.org/10.1002/adfm.202008515 https://doi.org/10.1016/j.bioactmat.2021.08.005
38. Chen YC, Lin RZ, Qi H, et al., 2012, Functional human 48. Zhao D, Zhu T, Li J, et al., 2021, Poly(lactic-co-glycolic acid)-
vascular network generated in photocrosslinkable gelatin based composite bone-substitute materials. Bioact Mater, 6
methacrylate hydrogels. Adv Funct Mater, 22(10): 2027– (2): 346–360.
2039. https://doi.org/10.1016/j.bioactmat.2020.08.016
https://doi.org/10.1002/adfm.201101662 49. Cui L, Zhang J, Zou J, et al., 2020, Electroactive composite
39. Schuurman W, Levett PA, Pot MW, et al., 2013, Gelatin- scaffold with locally expressed osteoinductive factor
methacrylamide hydrogels as potential biomaterials for for synergistic bone repair upon electrical stimulation.
fabrication of tissue-engineered cartilage constructs. Biomaterials, 230: 119617.
Macromol Biosci, 13(5): 551–561. https://doi.org/10.1016/j.biomaterials.2019.119617
https://doi.org/10.1002/mabi.201200471 50. Sun LL, Ma YF, Niu HY, et al., 2021, Recapitulation of in
40. Kurian AG, Singh RK, Patel KD, et al., 2022, Multifunctional situ endochondral ossification using an injectable hypoxia-
GelMA platforms with nanomaterials for advanced tissue mimetic hydrogel. Adv Funct Mater, 31(5): 2008515.
therapeutics. Bioact Mater, 8: 267–295.
https://doi.org/10.1002/adfm.202101589
https://doi.org/10.1016/j.bioactmat.2021.06.027
Volume 9 Issue 5 (2023) 127 https://doi.org/10.18063/ijb.754

