Page 135 - IJB-9-5
P. 135

International Journal of Bioprinting                               DLP-printed scaffold for bone regeneration



            31.  Cui J, Yu X, Yu B, et al., 2022, Coaxially fabricated dual-  41.  Hong Y, Zhou F, Hua Y, et al., 2019, A strongly adhesive
               drug loading electrospinning fibrous mat with programmed   hemostatic hydrogel for the repair of arterial and heart
               releasing behavior to boost vascularized bone regeneration.   bleeds. Nat Commun, 10(1): 2060.
               Adv Healthc Mater, 11(16): e2200571.
                                                                  https://doi.org/10.1038/s41467-019-10004-7
               https://doi.org/10.1002/adhm.202200571
                                                               42.  Gao Q, Niu X, Shao L, et al., 2019, 3D printing of complex
            32.  Han X, Sun M, Chen B, et al., 2021, Lotus seedpod-inspired   GelMA-based scaffolds with nanoclay. Biofabrication, 11(3):
               internal  vascularized  3D  printed  scaffold  for  bone  tissue   035006.
               repair. Bioact Mater, 6(6): 1639–1652.
                                                                  https://doi.org/10.1088/1758-5090/ab0cf6
               https://doi.org/10.1016/j.bioactmat.2020.11.019
                                                               43.  Ratheesh G, Vaquette C, Xiao Y, 2020, Patient-specific
            33.  Donneys A, Yang Q, Forrest ML, et al., 2019, Implantable   bone particles bioprinting for bone tissue engineering. Adv
               hyaluronic  acid-deferoxamine  conjugate  prevents  Healthc Mater, 9(23): e2001323.
               nonunions through stimulation of neovascularization. NPJ
               Regen Med, 4: 11.                                  https://doi.org/10.1002/adhm.202001323
               https://doi.org/10.1038/s41536-019-0072-9       44.  Gao J, Ding X, Yu X, et al., 2021, Cell-free bilayered porous
                                                                  scaffolds for osteochondral regeneration fabricated by
            34.  Yao Q, Liu Y, Selvaratnam B, et al., 2018, Mesoporous silicate   continuous 3D-printing using nascent physical hydrogel as
               nanoparticles/3D nanofibrous scaffold-mediated dual-drug   ink. Adv Healthc Mater, 10(3): e2001404.
               delivery for bone tissue engineering. J Control Release, 279:
               69–78.                                             https://doi.org/10.1002/adhm.202001404
               https://doi.org/10.1016/j.jconrel.2018.04.011   45.  Zhu T, Cui Y, Zhang M,  et al., 2020, Engineered three-
                                                                  dimensional scaffolds for enhanced bone regeneration in
            35.  Drager J, Sheikh Z, Zhang YL, et al., 2016, Local delivery   osteonecrosis. Bioact Mater, 5(3): 584–601.
               of iron chelators reduces in vivo remodeling of a calcium
               phosphate bone graft substitute. Acta Biomater, 42: 411–419.  https://doi.org/10.1016/j.bioactmat.2020.04.008
               https://doi.org/10.1016/j.actbio.2016.07.037    46.  Zhu T, Jiang M, Zhang M, et al., 2022, Construction and
                                                                  validation of steroid-induced rabbit osteonecrosis model.
            36.  Liu Z, Zhang J, Fu C, et al., 2023, Osteoimmunity-regulating
               biomaterials promote bone regeneration. Asian J Pharm Sci,   MethodsX, 9: 101713.
               18(1): 100774.                                     https://doi.org/10.1016/j.mex.2022.101713
               https://doi.org/10.1016/j.ajps.2023.100774      47.  Zhu  T,  Jiang  M,  Zhang  M,  et al.,  2022,  Biofunctionalized
            37.  Sun LL, Ma YF, Niu HY, et al., 2021, Recapitulation of in   composite scaffold to potentiate osteoconduction,
               situ endochondral ossification using an injectable hypoxia-  angiogenesis, and favorable metabolic microenvironment
               mimetic hydrogel. Adv Funct Mater, 31(5).          for osteonecrosis therapy. Bioact Mater, 9: 446–460.
               https://doi.org/10.1002/adfm.202008515             https://doi.org/10.1016/j.bioactmat.2021.08.005
            38.  Chen  YC,  Lin  RZ,  Qi  H,  et al.,  2012,  Functional  human   48.  Zhao D, Zhu T, Li J, et al., 2021, Poly(lactic-co-glycolic acid)-
               vascular network generated in photocrosslinkable gelatin   based composite bone-substitute materials. Bioact Mater, 6
               methacrylate  hydrogels.  Adv Funct Mater,  22(10):  2027–  (2): 346–360.
               2039.                                              https://doi.org/10.1016/j.bioactmat.2020.08.016
               https://doi.org/10.1002/adfm.201101662          49.  Cui L, Zhang J, Zou J, et al., 2020, Electroactive composite
            39.  Schuurman W, Levett PA, Pot MW,  et al., 2013, Gelatin-  scaffold with locally expressed osteoinductive factor
               methacrylamide hydrogels as potential biomaterials for   for synergistic bone repair upon electrical stimulation.
               fabrication of tissue-engineered cartilage constructs.   Biomaterials, 230: 119617.
               Macromol Biosci, 13(5): 551–561.                   https://doi.org/10.1016/j.biomaterials.2019.119617
               https://doi.org/10.1002/mabi.201200471          50.  Sun LL, Ma YF, Niu HY, et al., 2021, Recapitulation of in
            40.  Kurian AG, Singh RK, Patel KD, et al., 2022, Multifunctional   situ endochondral ossification using an injectable hypoxia-
               GelMA platforms with nanomaterials for advanced tissue   mimetic hydrogel. Adv Funct Mater, 31(5): 2008515.
               therapeutics. Bioact Mater, 8: 267–295.
                                                                  https://doi.org/10.1002/adfm.202101589
               https://doi.org/10.1016/j.bioactmat.2021.06.027







            Volume 9 Issue 5 (2023)                        127                         https://doi.org/10.18063/ijb.754
   130   131   132   133   134   135   136   137   138   139   140