Page 134 - IJB-9-5
P. 134

International Journal of Bioprinting                               DLP-printed scaffold for bone regeneration



            8.   Siddiqui Z, Sarkar B, Kim KK, et al., 2021, Self-assembling   19.  Fujii Y, Liu L, Yagasaki L, et al., 2022, Cartilage homeostasis
               peptide hydrogels facilitate vascularization in two-  and osteoarthritis. Int J Mol Sci, 23(11): 6316.
               component scaffolds. Chem Eng J, 422: 130145.      https://doi.org/10.3390/ijms23116316
               https://doi.org/10.1016/j.cej.2021.130145
                                                               20.  Ito Y, Matsuzaki T, Ayabe F, et al., 2021, Both microRNA-
            9.   Bernhard JC, Marolt Presen D, Li M, et al., 2022, Effects of   455-5p and -3p repress hypoxia-inducible factor-2α
               endochondral and intramembranous ossification pathways   expression and coordinately regulate cartilage homeostasis,
               on bone tissue formation and vascularization in human   Nat Commun, 12(1): 4148.
               tissue-engineered grafts. Cells, 11(19): 3070.
                                                                  https://doi.org/10.1038/s41467-021-24460-7
               https://doi.org/10.3390/cells11193070           21.  Jouan Y, Bouchemla Z, Bardèche-Trystram B, et al., 2022, Lin28a
            10.  Saul D, Khosla S, 2022, Fracture healing in the setting of   induces SOX9 and chondrocyte reprogramming via HMGA2
               endocrine diseases, aging, and cellular senescence. Endocr   and blunts cartilage loss in mice. Sci Adv, 8(34): eabn3106.
               Rev, 43(6): 984–1002.                              https://doi.org/10.1126/sciadv.abn3106
               https://doi.org/10.1210/endrev/bnac008          22.  Haseeb A, Kc R, Angelozzi M,  et al., 2021, SOX9 keeps
            11.  Ye X, He J, Wang S, et al., 2022, A hierarchical vascularized   growth plates and articular cartilage healthy by inhibiting
               engineered bone inspired by intramembranous ossification   chondrocyte dedifferentiation/osteoblastic redifferentiation.
               for mandibular regeneration. Int J Oral Sci, 14(1): 31.  Proc Natl Acad Sci USA, 118(8): e2019152118.
               https://doi.org/10.1038/s41368-022-00179-z         https://doi.org/10.1073/pnas.2019152118
            12.  Fernández-Iglesias Á, Fuente R, Gil-Peña H, et al., 2021, The   23.  Maes C, Carmeliet G, Schipani E, 2012, Hypoxia-driven
               formation of the epiphyseal bone plate occurs via combined   pathways in bone development, regeneration and disease.
               endochondral and intramembranous-like ossification.    Nat Rev Rheumatol, 8(6): 358–366.
               Int J Mol Sci, 22(2): 900.                         https://doi.org/10.1038/nrrheum.2012.36
               https://doi.org/10.3390/ijms22020900            24.  Solanki AK, Lali FV, Autefage H,  et al., 2021, Bioactive
            13.  Fu R, Liu C, Yan Y, et al., 2021, Bone defect reconstruction   glasses and electrospun composites that release cobalt to
               via endochondral ossification: A developmental engineering   stimulate the HIF pathway for wound healing applications.
               strategy. J Tissue Eng, 12: 20417314211004211.     Biomater Res, 25(1): 1.
               https://doi.org/10.1177/20417314211004211          https://doi.org/10.1186/s40824-020-00202-6
            14.  Liu Y, Yang Z, Wang L,  et al., 2021, Spatiotemporal   25.  Peng Y, Wu S, Li Y, et al., 2020, Type H blood vessels in bone
               immunomodulation using biomimetic scaffold promotes   modeling and remodeling. Theranostics, 10(1): 426–436.
               endochondral ossification-mediated bone healing. Adv Sci,   https://doi.org/10.7150/thno.34126
               8(11): e2100143.
                                                               26.  Wan C, Gilbert SR, Wang Y, et al., 2008, Activation of the
               https://doi.org/10.1002/advs.202100143             hypoxia-inducible factor-1alpha pathway accelerates bone
                                                                  regeneration. Proc Natl Acad Sci USA, 105(2): 686–691.
            15.  Wu L, Gu Y, Liu L,  et al., 2020, Hierarchical micro/
               nanofibrous membranes of sustained releasing VEGF for   https://doi.org/10.1073/pnas.0708474105
               periosteal regeneration. Biomaterials, 227: 119555.  27.  Voit RA, Sankaran VG, 2020, Stabilizing HIF to ameliorate
               https://doi.org/10.1016/j.biomaterials.2019.119555  anemia. Cell, 180: 6(1).
            16.  Peng K, Zhuo M, Li M, et al., 2020, Histone demethylase   https://doi.org/10.1016/j.cell.2019.12.010
               JMJD2D activates HIF1 signaling pathway via multiple   28.  Kaelin  WG,  Jr.,  Ratcliffe  PJ,  2008,  Oxygen  sensing  by
               mechanisms to promote colorectal cancer glycolysis and   metazoans: the central role of the HIF hydroxylase pathway.
               progression. Oncogene, 39(47): 7076–7091.          Mol Cell, 30(4): 393–402.
               https://doi.org/10.1038/s41388-020-01483-w         https://doi.org/10.1016/j.molcel.2008.04.009
            17.  Zhang S, Wang Y, Xu J,  et al., 2021, HIFα regulates   29.  Zheng X, Zhang X, Wang Y, et al., 2021, Hypoxia-mimicking
               developmental myelination independent of autocrine Wnt   3D bioglass-nanoclay scaffolds promote endogenous bone
               signaling. J Neurosci, 41(2): 251–268.             regeneration. Bioact Mater, 6(10): 3485–3495.
               https://doi.org/10.1523/jneurosci.0731-20.2020     https://doi.org/10.1016/j.bioactmat.2021.03.011
            18.  Wang P, Xiong X, Zhang J,  et al., 2020, Icariin increases   30.  Zhang  J,  Tong  D,  Song  H,  et al.,  2022,  Osteoimmunity-
               chondrocyte vitality by promoting hypoxia-inducible factor-  regulating biomimetically hierarchical  scaffold for
               1α expression and anaerobic glycolysis, Knee, 27(1): 18–25.  augmented bone regeneration. Adv Mater, 34(36): e2202044.
               https://doi.org/10.1016/j.knee.2019.09.012         https://doi.org/10.1002/adma.202202044


            Volume 9 Issue 5 (2023)                        126                         https://doi.org/10.18063/ijb.754
   129   130   131   132   133   134   135   136   137   138   139