Page 300 - IJB-9-5
P. 300

International Journal of Bioprinting                              Blood components for tissue graft bioprinting



            11.   Chen EP, Toksoy Z, Davis BA, et al., 2021, 3D bioprinting   https://doi.org/10.1021/ACSBIOMATERIALS.0C00940/
               of vascularized tissues for in vitro and in vivo applications.   SUPPL_FILE/AB0C00940_SI_001.PDF
               Front Bioeng Biotechnol, 9, 1–22.
                                                               22.   Horstman EE, Tormey CA, 2022, Plasma products for
               https://doi.org/10.3389/fbioe.2021.664188          transfusion: An overview. Ann Blood, 7: 1–13.
            12.   Kandi R, Sachdeva K, Choudhury SD, et al., 2023, A facile   https://doi.org/10.21037/AOB-22-7
               3D bio-fabrication of customized tubular scaffolds using
               solvent-based extrusion  printing  for tissue-engineered   23.   Dohan Ehrenfest DM, Andia I, Zumstein MA, et al., 2014,
               tracheal grafts. J Biomed Mater Res Part A, 111: 278–293.  Classification of platelet concentrates (platelet-rich plasma-
                                                                  PRP, platelet-rich fibrin-PRF) for topical and infiltrative
               https://doi.org/10.1002/JBM.A.37458                use in orthopedic and sports medicine: current consensus,
                                                                  clinical implications and perspectives. Ligaments Tendons J,
            13.   Moss SM, Schilp J, Yaakov M,  et al., 2022, Point-of-
               use, automated fabrication of a 3D human liver model   4: 3–9.
               supplemented with human adipose microvessels.  SLAS   24.   Burnouf T, Agrahari V, Agrahari V, 2019, Extracellular
               Discov, 27: 358–68                                 vesicles as nanomedicine: Hopes and hurdles in clinical
                                                                  translation. Int J Nanomedicine, 14: 8847–8859.
               https://doi.org/10.1016/j.slasd.2022.06.003
                                                                  https://doi.org/10.2147/IJN.S225453
            14.   Nulty J, Freeman FE, Browe DC, et al., 2021, 3D bioprinting
               of prevascularised implants for the repair of critically-sized   25.   Ebner-Peking P, Krisch L, Wolf M, et al., 2021, Self-assembly
               bone defects. Acta Biomater, 126: 154–169.         of differentiated progenitor cells facilitates spheroid human
                                                                  skin organoid formation and planar skin regeneration.
               https://doi.org/10.1016/J.ACTBIO.2021.03.003       Theranostics, 11: 8430–8447.
            15.   Liang Q, Ma Y, Yao X, et al., 2022, Advanced 3D-printing   https://doi.org/10.7150/THNO.59661
               bioinks for articular cartilage repair. Int J Bioprint, 8: 15–30.
                                                               26.   Hermida-Nogueira L, Barrachina MN, Morán LA,  et al.,
               https://doi.org/10.18063/ijb.v8i3.511              2020, Deciphering the secretome of leukocyte-platelet rich
            16.   Yeung  E,  Inoue  T,  Matsushita  H,  et al.,  2020,  In  vivo   fibrin: Towards a better understanding of its wound healing
               implantation of 3-dimensional printed customized branched   properties. Sci Rep, 10: 1–11.
               tissue engineered vascular graft in a porcine model. J Thorac   https://doi.org/10.1038/s41598-020-71419-7
               Cardiovasc Surg, 159: 1971–1981.e1.
                                                               27.   Kardos D, Hornyák I, Simon M, et al., 2018, Biological and
               https://doi.org/10.1016/J.JTCVS.2019.09.138
                                                                  mechanical properties of platelet-rich fibrin membranes
            17.   Yu HW, Kim BS, Lee JY,  et al., 2021, Tissue printing for   after thermal manipulation and preparation in a single-
               engineering transplantable human parathyroid patch to   syringe closed system. Int J Mol Sci, 19(11): 1–14.
               improve parathyroid engraftment, integration, and hormone
               secretion in vivo. Biofabrication, 13(3): 1-10.    https://doi.org/10.3390/ijms19113433
                                                               28.   Widyaningrum R, Burnouf T, Nebie O, et al., 2021, A purified
               https://doi.org/10.1088/1758-5090/ABF740
                                                                  human platelet pellet lysate rich in neurotrophic factors and
            18.   Del Amo C, Perez-valle A, Atilano L, et al., 2022, Unraveling   antioxidants repairs and protects corneal endothelial cells
               the signaling secretome of platelet-rich plasma: Towards   from oxidative stress. Biomed Pharmacother, 142: 112046.
               a better understanding of its therapeutic potential in knee
               osteoarthritis. J Clin Med, 11(3): 473.            https://doi.org/10.1016/j.biopha.2021.112046
                                                               29.   Andia I, Perez‐valle A, Amo Del C,  et al., 2020, Freeze‐
            19.   Sun B, Lian M, Han Y, et al., 2021, A 3D-bioprinted dual
               growth factor-releasing intervertebral disc scaffold induces   drying of platelet‐rich plasma: The quest for standardization.
               nucleus pulposus and annulus fibrosus reconstruction.   Int J Mol Sci, 21: 1–20.
               Bioact Mater, 6: 179.                              https://doi.org/10.3390/ijms21186904
               https://doi.org/10.1016/J.BIOACTMAT.2020.06.022  30.   Nurden AT, Nurden P, Sanchez M, et al., 2008, Platelets and
                                                                  wound healing. Front Biosci, 13: 3532–3548.
            20.   Lee J, Seok JM, Huh SJ,  et al., 2020, 3D printed micro-
               chambers carrying stem cell spheroids and pro-proliferative   https://doi.org/10.2741/2947/PDF
               growth factors for bone tissue regeneration. Biofabrication,   31.   Lee HM, Shen EC, Shen JT, et al., 2020, Tensile strength,
               13: 015011.                                        growth factor content and proliferation activities for two
               https://doi.org/10.1088/1758-5090/ABC39C           platelet concentrates of platelet-rich fibrin and concentrated
                                                                  growth factor. J Dent Sci, 15: 141–146.
            21.   Ngo  TB,  Spearman  BS,  Hlavac  N,  et al.,  2020,  Three-
               dimensional bioprinted hyaluronic acid hydrogel test beds   https://doi.org/10.1016/J.JDS.2020.03.011
               for  assessing  neural  cell  responses  to  competitive  growth   32.   Battinelli EM, Thon JN, Okazaki R,  et al., 2019,
               stimuli. ACS Biomater Sci Eng, 6: 6819–6830.       Megakaryocytes package contents into separate α-granules


            Volume 9 Issue 5 (2023)                        292                         https://doi.org/10.18063/ijb.762
   295   296   297   298   299   300   301   302   303   304   305