Page 300 - IJB-9-5
P. 300
International Journal of Bioprinting Blood components for tissue graft bioprinting
11. Chen EP, Toksoy Z, Davis BA, et al., 2021, 3D bioprinting https://doi.org/10.1021/ACSBIOMATERIALS.0C00940/
of vascularized tissues for in vitro and in vivo applications. SUPPL_FILE/AB0C00940_SI_001.PDF
Front Bioeng Biotechnol, 9, 1–22.
22. Horstman EE, Tormey CA, 2022, Plasma products for
https://doi.org/10.3389/fbioe.2021.664188 transfusion: An overview. Ann Blood, 7: 1–13.
12. Kandi R, Sachdeva K, Choudhury SD, et al., 2023, A facile https://doi.org/10.21037/AOB-22-7
3D bio-fabrication of customized tubular scaffolds using
solvent-based extrusion printing for tissue-engineered 23. Dohan Ehrenfest DM, Andia I, Zumstein MA, et al., 2014,
tracheal grafts. J Biomed Mater Res Part A, 111: 278–293. Classification of platelet concentrates (platelet-rich plasma-
PRP, platelet-rich fibrin-PRF) for topical and infiltrative
https://doi.org/10.1002/JBM.A.37458 use in orthopedic and sports medicine: current consensus,
clinical implications and perspectives. Ligaments Tendons J,
13. Moss SM, Schilp J, Yaakov M, et al., 2022, Point-of-
use, automated fabrication of a 3D human liver model 4: 3–9.
supplemented with human adipose microvessels. SLAS 24. Burnouf T, Agrahari V, Agrahari V, 2019, Extracellular
Discov, 27: 358–68 vesicles as nanomedicine: Hopes and hurdles in clinical
translation. Int J Nanomedicine, 14: 8847–8859.
https://doi.org/10.1016/j.slasd.2022.06.003
https://doi.org/10.2147/IJN.S225453
14. Nulty J, Freeman FE, Browe DC, et al., 2021, 3D bioprinting
of prevascularised implants for the repair of critically-sized 25. Ebner-Peking P, Krisch L, Wolf M, et al., 2021, Self-assembly
bone defects. Acta Biomater, 126: 154–169. of differentiated progenitor cells facilitates spheroid human
skin organoid formation and planar skin regeneration.
https://doi.org/10.1016/J.ACTBIO.2021.03.003 Theranostics, 11: 8430–8447.
15. Liang Q, Ma Y, Yao X, et al., 2022, Advanced 3D-printing https://doi.org/10.7150/THNO.59661
bioinks for articular cartilage repair. Int J Bioprint, 8: 15–30.
26. Hermida-Nogueira L, Barrachina MN, Morán LA, et al.,
https://doi.org/10.18063/ijb.v8i3.511 2020, Deciphering the secretome of leukocyte-platelet rich
16. Yeung E, Inoue T, Matsushita H, et al., 2020, In vivo fibrin: Towards a better understanding of its wound healing
implantation of 3-dimensional printed customized branched properties. Sci Rep, 10: 1–11.
tissue engineered vascular graft in a porcine model. J Thorac https://doi.org/10.1038/s41598-020-71419-7
Cardiovasc Surg, 159: 1971–1981.e1.
27. Kardos D, Hornyák I, Simon M, et al., 2018, Biological and
https://doi.org/10.1016/J.JTCVS.2019.09.138
mechanical properties of platelet-rich fibrin membranes
17. Yu HW, Kim BS, Lee JY, et al., 2021, Tissue printing for after thermal manipulation and preparation in a single-
engineering transplantable human parathyroid patch to syringe closed system. Int J Mol Sci, 19(11): 1–14.
improve parathyroid engraftment, integration, and hormone
secretion in vivo. Biofabrication, 13(3): 1-10. https://doi.org/10.3390/ijms19113433
28. Widyaningrum R, Burnouf T, Nebie O, et al., 2021, A purified
https://doi.org/10.1088/1758-5090/ABF740
human platelet pellet lysate rich in neurotrophic factors and
18. Del Amo C, Perez-valle A, Atilano L, et al., 2022, Unraveling antioxidants repairs and protects corneal endothelial cells
the signaling secretome of platelet-rich plasma: Towards from oxidative stress. Biomed Pharmacother, 142: 112046.
a better understanding of its therapeutic potential in knee
osteoarthritis. J Clin Med, 11(3): 473. https://doi.org/10.1016/j.biopha.2021.112046
29. Andia I, Perez‐valle A, Amo Del C, et al., 2020, Freeze‐
19. Sun B, Lian M, Han Y, et al., 2021, A 3D-bioprinted dual
growth factor-releasing intervertebral disc scaffold induces drying of platelet‐rich plasma: The quest for standardization.
nucleus pulposus and annulus fibrosus reconstruction. Int J Mol Sci, 21: 1–20.
Bioact Mater, 6: 179. https://doi.org/10.3390/ijms21186904
https://doi.org/10.1016/J.BIOACTMAT.2020.06.022 30. Nurden AT, Nurden P, Sanchez M, et al., 2008, Platelets and
wound healing. Front Biosci, 13: 3532–3548.
20. Lee J, Seok JM, Huh SJ, et al., 2020, 3D printed micro-
chambers carrying stem cell spheroids and pro-proliferative https://doi.org/10.2741/2947/PDF
growth factors for bone tissue regeneration. Biofabrication, 31. Lee HM, Shen EC, Shen JT, et al., 2020, Tensile strength,
13: 015011. growth factor content and proliferation activities for two
https://doi.org/10.1088/1758-5090/ABC39C platelet concentrates of platelet-rich fibrin and concentrated
growth factor. J Dent Sci, 15: 141–146.
21. Ngo TB, Spearman BS, Hlavac N, et al., 2020, Three-
dimensional bioprinted hyaluronic acid hydrogel test beds https://doi.org/10.1016/J.JDS.2020.03.011
for assessing neural cell responses to competitive growth 32. Battinelli EM, Thon JN, Okazaki R, et al., 2019,
stimuli. ACS Biomater Sci Eng, 6: 6819–6830. Megakaryocytes package contents into separate α-granules
Volume 9 Issue 5 (2023) 292 https://doi.org/10.18063/ijb.762

