Page 301 - IJB-9-5
P. 301

International Journal of Bioprinting                              Blood components for tissue graft bioprinting



               that are differentially distributed in platelets. Blood Adv, 3:   https://doi.org/10.1002/adfm.201906330
               3092–3098.
                                                               44.   Zhao M, Wang J, Zhang J, et al., 2022, Functionalizing multi-
               https://doi.org/10.1182/BLOODADVANCES.2018020834   component bioink with platelet-rich plasma for customized
            33.   Ambrosio AL, Di Pietro SM, 2016, Storage pool diseases   in-situ bilayer bioprinting for wound healing. Mater Today
               illuminate platelet dense granule biogenesis.  Platelets, 28:   Bio, 16: 100334.
               138–146.                                           https://doi.org/10.1016/J.MTBIO.2022.100334
               https://doi.org/10.1080/09537104.2016.1243789   45.   Zhu B, Wang D, Pan H, et al., 2023, Three-in-one customized
            34.   Miroshnychenko O, Chalkley RJ, Leib RD,  et  al., 2020,   bioink for islet organoid: GelMA/ECM/PRP orchestrate
               Proteomic analysis of platelet-rich and platelet-poor plasma.   pro-angiogenic and immunoregulatory function.  Colloids
               Regen Ther, 15: 226–235.                           Surf B Biointerfaces, 221: 113017.
               https://doi.org/10.1016/j.reth.2020.09.004         https://doi.org/10.1016/J.COLSURFB.2022.113017
            35.   Johnson J, Wu YW, Blyth C,  et al., 2021, Prospective   46.   Zou Q, Grottkau BE, He Z, et al., 2020, Biofabrication of
               therapeutic  applications  of  platelet  extracellular  vesicles.   valentine-shaped heart with a composite hydrogel and
               Trends Biotechnol, 39: 598–612.                    sacrificial material. Mater Sci Eng C, 108: 110205.
                                                                  https://doi.org/10.1016/j.msec.2019.110205
            36.   Burnouf T, Goubran HA, 2022, Regenerative effect of
               expired platelet concentrates in human therapy: An update.   47.   Ahlfeld T, Cubo-Mateo N, Cometta S, et al., 2020, A novel
               Transfus Apher Sci, 61(1): 103363.                 plasma-based bioink stimulates cell proliferation and
               https://doi.org/10.1016/J.TRANSCI.2022.103363      differentiation in bioprinted, mineralized constructs.  ACS
                                                                  Appl Mater Interfaces, 12: 12557–12572.
            37.   Vajen T, Benedikter BJ, Heinzmann ACA, et al., 2017, Platelet
               extracellular vesicles induce a pro-inflammatory smooth   https://doi.org/10.1021/acsami.0c00710
               muscle cell phenotype. J Extracell Vesicles, 6: 1322454.  48.   Cao B, Lin J, Tan J,  et al., 2023, 3D-printed vascularized
                                                                  biofunctional scaffold for bone regeneration. Int J Bioprint,
               https://doi.org/10.1080/20013078.2017.1322454/SUPPL_
               FILE/ZJEV_A_1322454_SM7826.PDF                     9(3): 702.
                                                                  https://doi.org/10.18063/IJB.702
            38.   Saumell-Esnaola M, Delgado D, García Del Caño G, et al.,
               2022, Isolation of platelet-derived exosomes from human   49.   Hao Y, Cao B, Deng L, et al., 2023, The first 3D-bioprinted
               platelet-rich plasma: biochemical and morphological   personalized active bone to repair bone defects: A case
               characterization. Int J Mol Sci, 23: 2861.         report. Int J Bioprint, 9: 654.
               https://doi.org/10.3390/IJMS23052861               https://doi.org/10.18063/IJB.V9I2.654
            39.   Del Amo C, Fernández-San Argimiro X, Cascajo-Castresana   50.   Wei L, Wu S, Kuss M,  et al., 2019, 3D printing of silk
               M,  et  al., 2022, Wound-microenvironment engineering   fibroin-based hybrid scaffold treated with platelet rich
               through advanced-dressing bioprinting. Int J Mol Sci, 23(5),   plasma  for bone tissue engineering.  Bioact Mater, 4:
               1–19.                                              256–260.
               https://doi.org/10.3390/ijms23052836               https://doi.org/10.1016/j.bioactmat.2019.09.001
            40.   Delila L, Wu YW, Nebie O,  et al., 2020, Extensive   51.   Jiang G, Li S, Yu K, et al., 2021, A 3D-printed PRP-GelMA
               characterization of the composition and functional activities   hydrogel promotes osteochondral regeneration through M2
               of five preparations of human platelet lysates for dedicated   macrophage polarization in a rabbit model. Acta Biomater,
               clinical uses. Platelets, 32(2): 259–272.          128: 150–162.
               https://doi.org/101080/0953710420201849603         https://doi.org/10.1016/J.ACTBIO.2021.04.010
            41.   Uchiyama R, Toyoda E, Maehara M, et al., 2021, Effect of   52.   Irmak G, Gümüşderelioglu M, 2020, Photo-activated
               platelet-rich plasma on M1/M2 macrophage polarization.   platelet-rich plasma (PRP)-based patient-specific bio-
               Int J Mol Sci, 22: 2336.                           ink for cartilage tissue  engineering.  Biomed Mater,
               https://doi.org/10.3390/IJMS22052336               15: 065010.
            42.   Perez-Valle A, Del Amo C, Andia I, 2020, Overview   https://doi.org/10.1088/1748-605X/ab9e46
               of current advances in extrusion bioprinting for skin   53.   Li Z, Zhang X, Yuan T,  et al., 2020, Addition of platelet-
               applications. Int J Mol Sci, 21: 1–28.             rich plasma to silk fibroin hydrogel bioprinting for cartilage
               https://doi.org/10.3390/ijms21186679               regeneration. Tissue Eng - Part A, 26: 886–895.
            43.   de Melo BAG, Jodat YA, Mehrotra S, et al., 2019, 3D printed   https://doi.org/10.1089/ten.tea.2019.0304
               cartilage-like  tissue  constructs  with  spatially  controlled   54.   Anil Kumar S, Alonzo M, Allen SC, et al., 2019, A visible
               mechanical properties. Adv Funct Mater, 29: 1–26.  light-cross-linkable, fibrin-gelatin-based bioprinted

            Volume 9 Issue 5 (2023)                        293                         https://doi.org/10.18063/ijb.762
   296   297   298   299   300   301   302   303   304   305   306