Page 301 - IJB-9-5
P. 301
International Journal of Bioprinting Blood components for tissue graft bioprinting
that are differentially distributed in platelets. Blood Adv, 3: https://doi.org/10.1002/adfm.201906330
3092–3098.
44. Zhao M, Wang J, Zhang J, et al., 2022, Functionalizing multi-
https://doi.org/10.1182/BLOODADVANCES.2018020834 component bioink with platelet-rich plasma for customized
33. Ambrosio AL, Di Pietro SM, 2016, Storage pool diseases in-situ bilayer bioprinting for wound healing. Mater Today
illuminate platelet dense granule biogenesis. Platelets, 28: Bio, 16: 100334.
138–146. https://doi.org/10.1016/J.MTBIO.2022.100334
https://doi.org/10.1080/09537104.2016.1243789 45. Zhu B, Wang D, Pan H, et al., 2023, Three-in-one customized
34. Miroshnychenko O, Chalkley RJ, Leib RD, et al., 2020, bioink for islet organoid: GelMA/ECM/PRP orchestrate
Proteomic analysis of platelet-rich and platelet-poor plasma. pro-angiogenic and immunoregulatory function. Colloids
Regen Ther, 15: 226–235. Surf B Biointerfaces, 221: 113017.
https://doi.org/10.1016/j.reth.2020.09.004 https://doi.org/10.1016/J.COLSURFB.2022.113017
35. Johnson J, Wu YW, Blyth C, et al., 2021, Prospective 46. Zou Q, Grottkau BE, He Z, et al., 2020, Biofabrication of
therapeutic applications of platelet extracellular vesicles. valentine-shaped heart with a composite hydrogel and
Trends Biotechnol, 39: 598–612. sacrificial material. Mater Sci Eng C, 108: 110205.
https://doi.org/10.1016/j.msec.2019.110205
36. Burnouf T, Goubran HA, 2022, Regenerative effect of
expired platelet concentrates in human therapy: An update. 47. Ahlfeld T, Cubo-Mateo N, Cometta S, et al., 2020, A novel
Transfus Apher Sci, 61(1): 103363. plasma-based bioink stimulates cell proliferation and
https://doi.org/10.1016/J.TRANSCI.2022.103363 differentiation in bioprinted, mineralized constructs. ACS
Appl Mater Interfaces, 12: 12557–12572.
37. Vajen T, Benedikter BJ, Heinzmann ACA, et al., 2017, Platelet
extracellular vesicles induce a pro-inflammatory smooth https://doi.org/10.1021/acsami.0c00710
muscle cell phenotype. J Extracell Vesicles, 6: 1322454. 48. Cao B, Lin J, Tan J, et al., 2023, 3D-printed vascularized
biofunctional scaffold for bone regeneration. Int J Bioprint,
https://doi.org/10.1080/20013078.2017.1322454/SUPPL_
FILE/ZJEV_A_1322454_SM7826.PDF 9(3): 702.
https://doi.org/10.18063/IJB.702
38. Saumell-Esnaola M, Delgado D, García Del Caño G, et al.,
2022, Isolation of platelet-derived exosomes from human 49. Hao Y, Cao B, Deng L, et al., 2023, The first 3D-bioprinted
platelet-rich plasma: biochemical and morphological personalized active bone to repair bone defects: A case
characterization. Int J Mol Sci, 23: 2861. report. Int J Bioprint, 9: 654.
https://doi.org/10.3390/IJMS23052861 https://doi.org/10.18063/IJB.V9I2.654
39. Del Amo C, Fernández-San Argimiro X, Cascajo-Castresana 50. Wei L, Wu S, Kuss M, et al., 2019, 3D printing of silk
M, et al., 2022, Wound-microenvironment engineering fibroin-based hybrid scaffold treated with platelet rich
through advanced-dressing bioprinting. Int J Mol Sci, 23(5), plasma for bone tissue engineering. Bioact Mater, 4:
1–19. 256–260.
https://doi.org/10.3390/ijms23052836 https://doi.org/10.1016/j.bioactmat.2019.09.001
40. Delila L, Wu YW, Nebie O, et al., 2020, Extensive 51. Jiang G, Li S, Yu K, et al., 2021, A 3D-printed PRP-GelMA
characterization of the composition and functional activities hydrogel promotes osteochondral regeneration through M2
of five preparations of human platelet lysates for dedicated macrophage polarization in a rabbit model. Acta Biomater,
clinical uses. Platelets, 32(2): 259–272. 128: 150–162.
https://doi.org/101080/0953710420201849603 https://doi.org/10.1016/J.ACTBIO.2021.04.010
41. Uchiyama R, Toyoda E, Maehara M, et al., 2021, Effect of 52. Irmak G, Gümüşderelioglu M, 2020, Photo-activated
platelet-rich plasma on M1/M2 macrophage polarization. platelet-rich plasma (PRP)-based patient-specific bio-
Int J Mol Sci, 22: 2336. ink for cartilage tissue engineering. Biomed Mater,
https://doi.org/10.3390/IJMS22052336 15: 065010.
42. Perez-Valle A, Del Amo C, Andia I, 2020, Overview https://doi.org/10.1088/1748-605X/ab9e46
of current advances in extrusion bioprinting for skin 53. Li Z, Zhang X, Yuan T, et al., 2020, Addition of platelet-
applications. Int J Mol Sci, 21: 1–28. rich plasma to silk fibroin hydrogel bioprinting for cartilage
https://doi.org/10.3390/ijms21186679 regeneration. Tissue Eng - Part A, 26: 886–895.
43. de Melo BAG, Jodat YA, Mehrotra S, et al., 2019, 3D printed https://doi.org/10.1089/ten.tea.2019.0304
cartilage-like tissue constructs with spatially controlled 54. Anil Kumar S, Alonzo M, Allen SC, et al., 2019, A visible
mechanical properties. Adv Funct Mater, 29: 1–26. light-cross-linkable, fibrin-gelatin-based bioprinted
Volume 9 Issue 5 (2023) 293 https://doi.org/10.18063/ijb.762

