Page 439 - IJB-9-5
P. 439
International Journal of Bioprinting 3D printed topographically fabricated micron track peripheral nerve conduit
41. Riggio C, Calatayud MP, Hoskins C, et al., 2012, Poly- 52. Hu H, Jonas P, 2014, A supercritical density of Na(+)
l-lysine-coated magnetic nanoparticles as intracellular channels ensures fast signaling in GABAergic interneuron
actuators for neural guidance. Int J Nanomed, 7: 3155–3166. axons. Nat Neurosci, 17(5): 686–693.
https://doi.org/10.2147/ijn.S28460 https://doi.org/10.1038/nn.3678
42. Cai J, Peng X, Nelson KD, et al., 2005, Permeable guidance 53. Eichel MA, Gargareta VI, D’Este E, et al., 2020, CMTM6
channels containing microfilament scaffolds enhance axon expressed on the adaxonal Schwann cell surface restricts axonal
growth and maturation. J Biomed Mater Res A, 75(2): 374–386. diameters in peripheral nerves. Nat Commun, 11(1): 4514.
https://doi.org/10.1002/jbm.a.30432 https://doi.org/10.1038/s41467-020-18172-7
43. Puhl DL, Funnell JL, D’Amato AR, et al., 2020, Aligned 54. Wang L, Lu C, Yang S, et al., 2020, A fully biodegradable
fingolimod-releasing electrospun fibers increase dorsal and self-electrified device for neuroregenerative medicine.
root ganglia neurite extension and decrease schwann Sci Adv, 6(50): 6686.
cell expression of promyelinating factors. Front Bioeng https://doi.org/10.1126/sciadv.abc6686
Biotechnol, 8: 937.
55. Jin B, Yu Y, Chen X, et al., 2023, Microtubes with
https://doi.org/10.3389/fbioe.2020.00937 gradient decellularized porcine sciatic nerve matrix from
44. Morano M, Wrobel S, Fregnan F, et al., 2014, Nanotechnology microfluidics for sciatic nerve regeneration. Bioact Mater,
versus stem cell engineering: In vitro comparison of neurite 21: 511–519.
inductive potentials. Int J Nanomed, 9: 5289–5306. https://doi.org/10.1016/j.bioactmat.2022.08.027
https://doi.org/10.2147/ijn.S71951 56. Mayoral I, Bevilacqua E, Gómez G, et al., 2022, Tissue
45. Li M, Tang Z, Lv S, et al., 2014, Cisplatin crosslinked pH- engineered in-vitro vascular patch fabrication using hybrid
sensitive nanoparticles for efficient delivery of doxorubicin. 3D printing and electrospinning. Mater Today Bio, 14:
Biomaterials, 35(12): 3851–3864. 100252.
https://doi.org/10.1016/j.biomaterials.2014.01.018 https://doi.org/10.1016/j.mtbio.2022.100252
46. Cao F, Ju E, Zhang Y, et al., 2017, An efficient and benign 57. Fan D, Yuan X, Wu W, et al., 2022, Self-shrinking soft
antimicrobial depot based on silver-infused MoS(2). ACS demoulding for complex high-aspect-ratio microchannels.
Nano, 11(5): 4651–4659. Nat Commun, 13(1): 5083.
https://doi.org/10.1021/acsnano.7b00343 https://doi.org/10.1038/s41467-022-32859-z
58. Liu Y, Dabrowska C, Mavousian A, et al., 2021, Bio-
47. Xu Y, Zhou J, Liu C, et al., 2021, Understanding the role of
tissue-specific decellularized spinal cord matrix hydrogel assembling macro-scale, lumenized airway tubes of defined
for neural stem/progenitor cell microenvironment shape via multi-organoid patterning and fusion. Adv Sci,
reconstruction and spinal cord injury. Biomaterials, 268: 8(9): 2003332.
120596. https://doi.org/10.1002/advs.202003332
https://doi.org/10.1016/j.biomaterials.2020.120596 59. Farhat W, Chatelain F, Marret A, et al., 2021, Trends in 3D
bioprinting for esophageal tissue repair and reconstruction.
48. Alvarsson A, Jimenez-Gonzalez M, Li R, et al., 2020, A 3D Biomaterials, 267: 120465.
atlas of the dynamic and regional variation of pancreatic
innervation in diabetes. Sci Adv, 6(41): 9124. https://doi.org/10.1016/j.biomaterials.2020.120465
https://doi.org/10.1126/sciadv.aaz9124 60. Chen S, Li R, Li X, et al., 2018, Electrospinning: An enabling
nanotechnology platform for drug delivery and regenerative
49. Asbury AK, King RH, Reilly MM, et al., 2011, Professor medicine. Adv Drug Deliv Rev, 132: 188–213.
P. K. Thomas: clinician, investigator, editor and leader--a
retrospective appreciation. Brain, 134(Pt 2): 618–626. https://doi.org/10.1016/j.addr.2018.05.001
https://doi.org/10.1093/brain/awq230 61. Yao Z, Yuan W, Xu J, et al., 2022, Magnesium-encapsulated
injectable hydrogel and 3D-engineered polycaprolactone
50. Afshari FT, Kwok JC, White L, et al., 2010, Schwann cell conduit facilitate peripheral nerve regeneration. Adv Sci,
migration is integrin-dependent and inhibited by astrocyte- 9(21): e2202102.
produced aggrecan. Glia, 58(7): 857–869.
https://doi.org/10.1002/advs.202202102
https://doi.org/10.1002/glia.20970
62. Zhu M, Li W, Dong X, et al., 2019, In vivo engineered
51. Benoy V, Van Helleputte L, Prior R, et al., 2018, HDAC6 extracellular matrix scaffolds with instructive niches for
is a therapeutic target in mutant GARS-induced Charcot- oriented tissue regeneration. Nat Commun, 10(1): 4620.
Marie-Tooth disease. Brain, 141(3): 673–687.
https://doi.org/10.1038/s41467-019-12545-3
https://doi.org/10.1093/brain/awx375
Volume 9 Issue 5 (2023) 431 https://doi.org/10.18063/ijb.770

