Page 439 - IJB-9-5
P. 439

International Journal of Bioprinting        3D printed topographically fabricated micron track peripheral nerve conduit



            41.  Riggio C, Calatayud MP, Hoskins C,  et al., 2012, Poly-  52.  Hu  H,  Jonas  P,  2014,  A  supercritical  density  of  Na(+)
               l-lysine-coated  magnetic  nanoparticles  as intracellular   channels ensures fast signaling in GABAergic interneuron
               actuators for neural guidance. Int J Nanomed, 7: 3155–3166.  axons. Nat Neurosci, 17(5): 686–693.
               https://doi.org/10.2147/ijn.S28460                 https://doi.org/10.1038/nn.3678
            42.  Cai J, Peng X, Nelson KD, et al., 2005, Permeable guidance   53.  Eichel MA, Gargareta VI, D’Este E,  et al., 2020, CMTM6
               channels containing microfilament scaffolds enhance axon   expressed on the adaxonal Schwann cell surface restricts axonal
               growth and maturation. J Biomed Mater Res A, 75(2): 374–386.  diameters in peripheral nerves. Nat Commun, 11(1): 4514.
               https://doi.org/10.1002/jbm.a.30432                https://doi.org/10.1038/s41467-020-18172-7
            43.  Puhl DL, Funnell JL, D’Amato AR,  et al., 2020, Aligned   54.  Wang L, Lu C, Yang S, et al., 2020, A fully biodegradable
               fingolimod-releasing  electrospun fibers increase  dorsal   and self-electrified device for neuroregenerative medicine.
               root ganglia neurite extension and decrease schwann   Sci Adv, 6(50): 6686.
               cell expression of promyelinating factors.  Front Bioeng   https://doi.org/10.1126/sciadv.abc6686
               Biotechnol, 8: 937.
                                                               55.  Jin B, Yu Y, Chen X,  et al., 2023, Microtubes with
               https://doi.org/10.3389/fbioe.2020.00937           gradient decellularized porcine sciatic nerve matrix from
            44.  Morano M, Wrobel S, Fregnan F, et al., 2014, Nanotechnology   microfluidics  for sciatic nerve regeneration.  Bioact Mater,
               versus stem cell engineering: In vitro comparison of neurite   21: 511–519.
               inductive potentials. Int J Nanomed, 9: 5289–5306.  https://doi.org/10.1016/j.bioactmat.2022.08.027
               https://doi.org/10.2147/ijn.S71951              56.  Mayoral I, Bevilacqua E, Gómez G,  et al., 2022, Tissue
            45.  Li M, Tang Z, Lv S, et al., 2014, Cisplatin crosslinked pH-  engineered in-vitro vascular patch fabrication using hybrid
               sensitive nanoparticles for efficient delivery of doxorubicin.   3D printing and electrospinning.  Mater Today Bio, 14:
               Biomaterials, 35(12): 3851–3864.                   100252.
               https://doi.org/10.1016/j.biomaterials.2014.01.018  https://doi.org/10.1016/j.mtbio.2022.100252
            46.  Cao F, Ju E, Zhang Y, et al., 2017, An efficient and benign   57.  Fan D, Yuan X, Wu W,  et  al., 2022, Self-shrinking soft
               antimicrobial depot based on silver-infused MoS(2).  ACS   demoulding for complex high-aspect-ratio microchannels.
               Nano, 11(5): 4651–4659.                            Nat Commun, 13(1): 5083.
               https://doi.org/10.1021/acsnano.7b00343            https://doi.org/10.1038/s41467-022-32859-z
                                                               58.  Liu Y, Dabrowska C, Mavousian A,  et al., 2021, Bio-
            47.  Xu Y, Zhou J, Liu C, et al., 2021, Understanding the role of
               tissue-specific decellularized spinal cord matrix hydrogel   assembling macro-scale, lumenized airway tubes of defined
               for neural stem/progenitor cell microenvironment   shape via multi-organoid patterning and fusion.  Adv Sci,
               reconstruction and spinal cord injury.  Biomaterials, 268:   8(9): 2003332.
               120596.                                            https://doi.org/10.1002/advs.202003332
               https://doi.org/10.1016/j.biomaterials.2020.120596  59.  Farhat W, Chatelain F, Marret A, et al., 2021, Trends in 3D
                                                                  bioprinting for esophageal tissue repair and reconstruction.
            48.  Alvarsson A, Jimenez-Gonzalez M, Li R, et al., 2020, A 3D   Biomaterials, 267: 120465.
               atlas of the dynamic and regional variation of pancreatic
               innervation in diabetes. Sci Adv, 6(41): 9124.     https://doi.org/10.1016/j.biomaterials.2020.120465
               https://doi.org/10.1126/sciadv.aaz9124          60.  Chen S, Li R, Li X, et al., 2018, Electrospinning: An enabling
                                                                  nanotechnology platform for drug delivery and regenerative
            49.  Asbury AK, King RH, Reilly MM,  et al., 2011, Professor   medicine. Adv Drug Deliv Rev, 132: 188–213.
               P. K.  Thomas: clinician,  investigator,  editor and leader--a
               retrospective appreciation. Brain, 134(Pt 2): 618–626.  https://doi.org/10.1016/j.addr.2018.05.001
               https://doi.org/10.1093/brain/awq230            61.  Yao Z, Yuan W, Xu J, et al., 2022, Magnesium-encapsulated
                                                                  injectable hydrogel and  3D-engineered  polycaprolactone
            50.  Afshari FT, Kwok JC, White L,  et al., 2010, Schwann cell   conduit facilitate peripheral nerve regeneration.  Adv Sci,
               migration is integrin-dependent and inhibited by astrocyte-  9(21): e2202102.
               produced aggrecan. Glia, 58(7): 857–869.
                                                                  https://doi.org/10.1002/advs.202202102
               https://doi.org/10.1002/glia.20970
                                                               62.  Zhu M, Li W, Dong X,  et al., 2019, In vivo engineered
            51.  Benoy V, Van Helleputte L, Prior R, et al., 2018, HDAC6   extracellular  matrix  scaffolds with instructive  niches  for
               is a therapeutic target in mutant GARS-induced Charcot-  oriented tissue regeneration. Nat Commun, 10(1): 4620.
               Marie-Tooth disease. Brain, 141(3): 673–687.
                                                                  https://doi.org/10.1038/s41467-019-12545-3
               https://doi.org/10.1093/brain/awx375


            Volume 9 Issue 5 (2023)                        431                         https://doi.org/10.18063/ijb.770
   434   435   436   437   438   439   440   441   442   443   444