Page 440 - IJB-9-5
P. 440
International Journal of Bioprinting 3D printed topographically fabricated micron track peripheral nerve conduit
63. Qian Y, Zhao X, Han Q, et al., 2018, An integrated multi- 72. Li J, Shu Y, Hao T, et al., 2013, A chitosan-glutathione
layer 3D-fabrication of PDA/RGD coated graphene loaded based injectable hydrogel for suppression of oxidative
PCL nanoscaffold for peripheral nerve restoration. Nat stress damage in cardiomyocytes. Biomaterials, 34(36):
Commun, 9(1): 323. 9071–9081.
https://doi.org/10.1038/s41467-017-02598-7 https://doi.org/10.1016/j.biomaterials.2013.08.031
64. Cui X, Jing J, Wu R, et al., 2021, Adipose tissue-derived 73. Lu Q, Zhang F, Cheng W, et al., 2021, Nerve guidance
neurotrophic factor 3 regulates sympathetic innervation and conduits with hierarchical anisotropic architecture for
thermogenesis in adipose tissue. Nat Commun, 12(1): 5362. peripheral nerve regeneration. Adv Healthc Mater, 10(14):
https://doi.org/10.1038/s41467-021-25766-2 e2100427.
65. Han Q, Ordaz JD, Liu NK, et al., 2019, Descending motor https://doi.org/10.1002/adhm.202100427
circuitry required for NT-3 mediated locomotor recovery 74. Hsueh YY, Chang YJ, Huang TC, et al., 2014, Functional
after spinal cord injury in mice. Nat Commun, 10(1): 5815. recoveries of sciatic nerve regeneration by combining
https://doi.org/10.1038/s41467-019-13854-3 chitosan-coated conduit and neurosphere cells induced
from adipose-derived stem cells. Biomaterials, 35(7): 2234–
66. Takano T, Wu M, Nakamuta S, et al., 2017, Discovery 2244.
of long-range inhibitory signaling to ensure single axon
formation. Nat Commun, 8(1): 33. https://doi.org/10.1016/j.biomaterials.2013.11.081
https://doi.org/10.1038/s41467-017-00044-2 75. Mekhail M, Almazan G, Tabrizian M, 2015, Purine-
crosslinked injectable chitosan sponges promote
67. Lai BQ, Wang JM, Ling EA, et al., 2014, Graft of a tissue- oligodendrocyte progenitor cells’ attachment and
engineered neural scaffold serves as a promising strategy to differentiation. Biomater Sci, 3(2): 279–287.
restore myelination after rat spinal cord transection. Stem
Cells Dev, 23(8): 910–921. https://doi.org/10.1039/c4bm00215f
https://doi.org/10.1089/scd.2013.0426 76. Li X, Yang Z, Zhang A, 2009, The effect of neurotrophin-3/
chitosan carriers on the proliferation and differentiation of
68. Yoshimura T, Kawano Y, Arimura N, et al., 2005, GSK- neural stem cells. Biomaterials, 30(28): 4978–4985.
3beta regulates phosphorylation of CRMP-2 and neuronal
polarity. Cell, 120(1): 137–149:. https://doi.org/10.1016/j.biomaterials.2009.05.047
https://doi.org/10.1016/j.cell.2004.11.012 77. Liu K, Yan L, Li R, et al., 2022, 3D printed personalized
nerve guide conduits for precision repair of peripheral nerve
69. Liu D, Shu G, Jin F, et al., 2020, ROS-responsive chitosan- defects. Adv Sci, 9(12): e2103875.
SS31 prodrug for AKI therapy via rapid distribution in the
kidney and long-term retention in the renal tubule. Sci Adv, https://doi.org/10.1002/advs.202103875
6(41): 7422. 78. Chen S, John JV, McCarthy A, et al., 2020, Fast transformation
https://doi.org/10.1126/sciadv.abb7422 of 2D nanofiber membranes into pre-molded 3D scaffolds
with biomimetic and oriented porous structure for
70. Chan LW, Kim CH, Wang X, et al., 2016, PolySTAT-modified biomedical applications. Appl Phys Rev, 7(2): 021406.
chitosan gauzes for improved hemostasis in external
hemorrhage. Acta Biomater, 31: 178–185. https://doi.org/10.1063/1.5144808
https://doi.org/10.1016/j.actbio.2015.11.017 79. Joung D, Lavoie NS, Guo SZ, et al., 2020, 3D printed neural
regeneration devices. Adv Funct Mater, 30(1): 10.
71. Zakhem E, Raghavan S, Bitar KN, 2014, Neo-innervation of
a bioengineered intestinal smooth muscle construct around https://doi.org/10.1002/adfm.201906237
chitosan scaffold. Biomaterials, 35(6): 1882–1889.
https://doi.org/10.1016/j.biomaterials.2013.11.049
Volume 9 Issue 5 (2023) 432 https://doi.org/10.18063/ijb.770

