Page 440 - IJB-9-5
P. 440

International Journal of Bioprinting        3D printed topographically fabricated micron track peripheral nerve conduit



            63.  Qian Y, Zhao X, Han Q, et al., 2018, An integrated multi-  72.  Li J, Shu Y, Hao T,  et al., 2013, A chitosan-glutathione
               layer 3D-fabrication of PDA/RGD coated graphene loaded   based injectable hydrogel for suppression of oxidative
               PCL nanoscaffold for peripheral nerve restoration.  Nat   stress damage in cardiomyocytes.  Biomaterials, 34(36):
               Commun, 9(1): 323.                                 9071–9081.
               https://doi.org/10.1038/s41467-017-02598-7         https://doi.org/10.1016/j.biomaterials.2013.08.031
            64.  Cui  X, Jing J,  Wu R,  et al.,  2021, Adipose tissue-derived   73.  Lu Q, Zhang F, Cheng W,  et al., 2021, Nerve guidance
               neurotrophic factor 3 regulates sympathetic innervation and   conduits with hierarchical anisotropic architecture for
               thermogenesis in adipose tissue. Nat Commun, 12(1): 5362.  peripheral nerve regeneration. Adv Healthc Mater, 10(14):
               https://doi.org/10.1038/s41467-021-25766-2         e2100427.
            65.  Han Q, Ordaz JD, Liu NK, et al., 2019, Descending motor   https://doi.org/10.1002/adhm.202100427
               circuitry required for NT-3 mediated locomotor recovery   74.  Hsueh YY, Chang YJ, Huang TC,  et al., 2014, Functional
               after spinal cord injury in mice. Nat Commun, 10(1): 5815.  recoveries of sciatic nerve regeneration by combining
               https://doi.org/10.1038/s41467-019-13854-3         chitosan-coated conduit and neurosphere cells induced
                                                                  from adipose-derived stem cells. Biomaterials, 35(7): 2234–
            66.  Takano T, Wu M, Nakamuta S,  et al., 2017, Discovery   2244.
               of long-range inhibitory signaling to ensure single axon
               formation. Nat Commun, 8(1): 33.                   https://doi.org/10.1016/j.biomaterials.2013.11.081
               https://doi.org/10.1038/s41467-017-00044-2      75.  Mekhail M, Almazan G, Tabrizian M, 2015, Purine-
                                                                  crosslinked  injectable  chitosan  sponges  promote
            67.  Lai BQ, Wang JM, Ling EA, et al., 2014, Graft of a tissue-  oligodendrocyte  progenitor  cells’  attachment  and
               engineered neural scaffold serves as a promising strategy to   differentiation. Biomater Sci, 3(2): 279–287.
               restore myelination after rat spinal cord transection. Stem
               Cells Dev, 23(8): 910–921.                         https://doi.org/10.1039/c4bm00215f
               https://doi.org/10.1089/scd.2013.0426           76.  Li X, Yang Z, Zhang A, 2009, The effect of neurotrophin-3/
                                                                  chitosan carriers on the proliferation and differentiation of
            68.  Yoshimura T, Kawano Y, Arimura N,  et al., 2005, GSK-  neural stem cells. Biomaterials, 30(28): 4978–4985.
               3beta regulates phosphorylation of CRMP-2 and neuronal
               polarity. Cell, 120(1): 137–149:.                  https://doi.org/10.1016/j.biomaterials.2009.05.047
               https://doi.org/10.1016/j.cell.2004.11.012      77.  Liu K, Yan L, Li R,  et al., 2022, 3D printed personalized
                                                                  nerve guide conduits for precision repair of peripheral nerve
            69.  Liu D, Shu G, Jin F, et al., 2020, ROS-responsive chitosan-  defects. Adv Sci, 9(12): e2103875.
               SS31 prodrug for AKI therapy via rapid distribution in the
               kidney and long-term retention in the renal tubule. Sci Adv,    https://doi.org/10.1002/advs.202103875
               6(41): 7422.                                    78.  Chen S, John JV, McCarthy A, et al., 2020, Fast transformation
               https://doi.org/10.1126/sciadv.abb7422             of 2D nanofiber membranes into pre-molded 3D scaffolds
                                                                  with biomimetic and oriented porous structure for
            70.  Chan LW, Kim CH, Wang X, et al., 2016, PolySTAT-modified   biomedical applications. Appl Phys Rev, 7(2): 021406.
               chitosan gauzes for improved hemostasis in external
               hemorrhage. Acta Biomater, 31: 178–185.            https://doi.org/10.1063/1.5144808
               https://doi.org/10.1016/j.actbio.2015.11.017    79.  Joung D, Lavoie NS, Guo SZ, et al., 2020, 3D printed neural
                                                                  regeneration devices. Adv Funct Mater, 30(1): 10.
            71.  Zakhem E, Raghavan S, Bitar KN, 2014, Neo-innervation of
               a bioengineered intestinal smooth muscle construct around   https://doi.org/10.1002/adfm.201906237
               chitosan scaffold. Biomaterials, 35(6): 1882–1889.
               https://doi.org/10.1016/j.biomaterials.2013.11.049

















            Volume 9 Issue 5 (2023)                        432                         https://doi.org/10.18063/ijb.770
   435   436   437   438   439   440   441   442   443   444   445