Page 451 - IJB-9-5
P. 451
International Journal of Bioprinting Core-shell bioarchitectures
19. Garreta E, Kamm RD, Chuva de Sousa Lopes SM, et al., 2021, kinetics in alginate hydrogels: A novel theory and its
Rethinking organoid technology through bioengineering. numerical implementation. J Mech Phys Solids, 153: 104476.
Nat Mater, 20(2): 145–155.
https://doi.org/10.1016/j.jmps.2021.104476
https://doi.org/10.1038/s41563-020-00804-4
31. Hajikhani A, Scocozza F, Conti M, et al., 2019, Experimental
20. Fabbri R, Cacopardo L, Ahluwalia A, et al., 2023, Advanced characterization and computational modeling of hydrogel
3D models of human brain tissue using neural cell lines: cross-linking for bioprinting applications. Int J Artif Organs,
State-of-the-art and future prospects. Cells, 12(8): 1181. 42(10): 548–557.
https://doi.org/10.3390/cells12081181 https://doi.org/10.1177/0391398819856024
21. Mobaraki M, Ghaffari M, Yazdanpanah A, et al., 2020, 32. Pluen A, Netti PA, Jain RK, et al., 1999, Diffusion of
Bioinks and bioprinting: A focused review. Bioprinting, 18: macromolecules in agarose gels: Comparison of linear and
e00080. globular configurations. Biophys J, 77(1): 542–552.
https://doi.org/10.1016/j.bprint.2020.e00080 https://doi.org/10.1016/S0006-3495(99)76911-0
22. Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR, 33. Tirella A, Magliaro C, Penta M, et al., 2014, Sphyga: A
2021, Alginate and alginate composites for biomedical multiparameter open source tool for fabricating smart and
applications. Asian J Pharm Sci, 16(3): 280–306. tunable hydrogel microbeads. Biofabrication, 6(2): 025009.
DOI 10.1088/1758-5082/6/2/025009
https://doi.org/10.1016/j.ajps.2020.10.001
https://doi.org/10.1088/1758-5082/6/2/025009
23. Choi DH, Park CH, Kim IH, et al., 2010, Fabrication of core-
shell microcapsules using PLGA and alginate for dual growth 34. Frost TS, Jiang L, Lynch RM, et al., 2019, Permeability of
factor delivery system. J Control Release, 147(2): 193–201. epithelial/endothelial barriers in transwells and microfluidic
bilayer devices. Micromachines (Basel), 10(8): 8:553.
https://doi.org/10.1016/j.jconrel.2010.07.103
https://doi.org/10.3390/mi10080533
24. Duarte ARC, Mano F, Reis RL, et al., 2014, Microfluidic
production of per fluorocarbon-alginate core − shell 35. Costa J, Almonti V, Cacopardo L, et al., 2020, Investigating
microparticles for ultrasound therapeutic applications. curcumin/intestinal epithelium interaction in a millifluidic
Langmuir, 30(41): 12391–99. bioreactor. Bioengineering, 7(3): 100.
https://doi.org/10.1021/la502822v https://doi.org/10.3390/bioengineering7030100
25. Yu L, Sun Q, Hui Y, et al., 2019, Microfluidic formation of 36. Matricardi P, Pontoriero M, Coviello T, et al., 2008, In
core-shell alginate microparticles for protein encapsulation situ cross-linkable novel alginate-dextran methacrylate
and controlled release. J Colloid Interface Sci, 539: 497–503. IPN hydrogels for biomedical applications: Mechanical
characterization and drug delivery properties.
https://doi.org/10.1016/j.jcis.2018.12.075
Biomacromolecules, 9(7): 2014–2020.
26. Kamperman T, Trikalitis VD, Karperien M, et al., 2018, https://doi.org/10.1021/bm800252c
Ultrahigh-throughput production of monodisperse and
multifunctional janus microparticles using in-air microfluidics. 37. Bharatiya B, Ghosh G, Aswal VK, et al., 2010, Effect of
ACS Appl Mater Interfaces, 10(28): 23433–23438. n-Hexanol and n-Hexylamine on the micellar solutions of
pluronic F127 and P123 in water and 1M NaCl. J Dispers Sci
https://doi.org/10.1021/acsami.8b05227
Technol, 31(5): 660–667, DOI: 10.1080/01932690903212867
27. Agarwal P, Choi JK, Huang H, et al., 2015, A biomimetic http://dx.doi.org/10.1080/01932690903212867
core-shell platform for miniaturized 3D cell and tissue
engineering. Part Part Syst Charact, 32(8): 809–816. 38. White ES, 2015, Lung extracellular matrix and fibroblast
function. Ann Am Thorac Soc, 12(1): 30–33.
https://doi.org/10.1002/ppsc.201500025
https://doi.org/10.1513/AnnalsATS.201406-240MG
28. Wang H, Liu H, Liu H, et al., 2019, One-step generation of
core–shell gelatin methacrylate (GelMA) microgels using a 39. Ushakumary MG, Riccetti M, Perl AKT, 2021, Resident
droplet microfluidic system. Adv Mater Technol, 4(6): 1–10. interstitial lung fibroblasts and their role in alveolar stem cell
niche development, homeostasis, injury, and regeneration.
https://doi.org/10.1002/admt.201800632.
Stem Cells Transl Med, 10(7): 1021–1032.
29. Wilkes ED, Phillips SD, Basaran OA, 1999, Computational https://doi.org/10.1002/sctm.20-0526
and experimental analysis of dynamics of drop formation.
Phys Fluids, 11(12): 3577–3598. 40. Cacopardo L, Ahluwalia A, 2021, Engineering and
monitoring 3D cell constructs with time-evolving
https://doi.org/10.1063/1.870224
viscoelasticity for the study of liver fibrosis in vitro.
30. Hajikhani A, Wriggers P, Marino M, 2021, Chemo- Bioengineering, 8(8): 106.
mechanical modelling of swelling and crosslinking reaction
https://doi.org/10.3390/bioengineering8080106
Volume 9 Issue 5 (2023) 443 https://doi.org/10.18063/ijb.771

