Page 451 - IJB-9-5
P. 451

International Journal of Bioprinting                                          Core-shell bioarchitectures



            19.  Garreta E, Kamm RD, Chuva de Sousa Lopes SM, et al., 2021,   kinetics in alginate hydrogels: A novel theory and its
               Rethinking organoid technology through bioengineering.   numerical implementation. J Mech Phys Solids, 153: 104476.
               Nat Mater, 20(2): 145–155.
                                                                  https://doi.org/10.1016/j.jmps.2021.104476
               https://doi.org/10.1038/s41563-020-00804-4
                                                               31.  Hajikhani A, Scocozza F, Conti M, et al., 2019, Experimental
            20.  Fabbri R, Cacopardo L, Ahluwalia A, et al., 2023, Advanced   characterization and computational modeling of hydrogel
               3D models of human brain tissue using neural cell lines:   cross-linking for bioprinting applications. Int J Artif Organs,
               State-of-the-art and future prospects. Cells, 12(8): 1181.  42(10): 548–557.
               https://doi.org/10.3390/cells12081181              https://doi.org/10.1177/0391398819856024
            21.  Mobaraki M, Ghaffari M, Yazdanpanah A,  et al., 2020,   32.  Pluen A, Netti PA, Jain RK,  et al., 1999, Diffusion of
               Bioinks and bioprinting: A focused review. Bioprinting, 18:   macromolecules in agarose gels: Comparison of linear and
               e00080.                                            globular configurations. Biophys J, 77(1): 542–552.
               https://doi.org/10.1016/j.bprint.2020.e00080       https://doi.org/10.1016/S0006-3495(99)76911-0
            22.  Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR,   33.  Tirella A, Magliaro C, Penta M,  et al., 2014, Sphyga: A
               2021, Alginate and alginate composites for biomedical   multiparameter open source tool for fabricating smart and
               applications. Asian J Pharm Sci, 16(3): 280–306.   tunable hydrogel microbeads. Biofabrication, 6(2): 025009.
                                                                  DOI 10.1088/1758-5082/6/2/025009
               https://doi.org/10.1016/j.ajps.2020.10.001
                                                                  https://doi.org/10.1088/1758-5082/6/2/025009
            23.  Choi DH, Park CH, Kim IH, et al., 2010, Fabrication of core-
               shell microcapsules using PLGA and alginate for dual growth   34.  Frost TS, Jiang L, Lynch RM, et al., 2019, Permeability of
               factor delivery system. J Control Release, 147(2): 193–201.  epithelial/endothelial barriers in transwells and microfluidic
                                                                  bilayer devices. Micromachines (Basel), 10(8): 8:553.
               https://doi.org/10.1016/j.jconrel.2010.07.103
                                                                  https://doi.org/10.3390/mi10080533
            24.  Duarte ARC, Mano F, Reis RL,  et al., 2014, Microfluidic
               production of per fluorocarbon-alginate core − shell   35.  Costa J, Almonti V, Cacopardo L, et al., 2020, Investigating
               microparticles  for ultrasound therapeutic  applications.   curcumin/intestinal epithelium interaction in a millifluidic
               Langmuir, 30(41): 12391–99.                        bioreactor. Bioengineering, 7(3): 100.
               https://doi.org/10.1021/la502822v                  https://doi.org/10.3390/bioengineering7030100
            25.  Yu L, Sun Q, Hui Y, et al., 2019, Microfluidic formation of   36.  Matricardi P, Pontoriero M, Coviello T,  et al., 2008, In
               core-shell alginate microparticles for protein encapsulation   situ cross-linkable novel alginate-dextran methacrylate
               and controlled release. J Colloid Interface Sci, 539: 497–503.  IPN hydrogels for biomedical applications: Mechanical
                                                                  characterization  and  drug  delivery  properties.
               https://doi.org/10.1016/j.jcis.2018.12.075
                                                                  Biomacromolecules, 9(7): 2014–2020.
            26.  Kamperman T, Trikalitis VD, Karperien M,  et al., 2018,      https://doi.org/10.1021/bm800252c
               Ultrahigh-throughput production of monodisperse and
               multifunctional janus microparticles using in-air microfluidics.   37.  Bharatiya  B,  Ghosh  G,  Aswal  VK,  et al.,  2010,  Effect  of
               ACS Appl Mater Interfaces, 10(28): 23433–23438.    n-Hexanol and n-Hexylamine on the micellar solutions of
                                                                  pluronic F127 and P123 in water and 1M NaCl. J Dispers Sci
               https://doi.org/10.1021/acsami.8b05227
                                                                  Technol, 31(5): 660–667, DOI: 10.1080/01932690903212867
            27.  Agarwal P, Choi JK, Huang H, et al., 2015, A biomimetic   http://dx.doi.org/10.1080/01932690903212867
               core-shell platform for miniaturized 3D cell and tissue
               engineering. Part Part Syst Charact, 32(8): 809–816.  38.  White ES, 2015, Lung extracellular matrix and fibroblast
                                                                  function. Ann Am Thorac Soc, 12(1): 30–33.
               https://doi.org/10.1002/ppsc.201500025
                                                                  https://doi.org/10.1513/AnnalsATS.201406-240MG
            28.  Wang H, Liu H, Liu H, et al., 2019, One-step generation of
               core–shell gelatin methacrylate (GelMA) microgels using a   39.  Ushakumary  MG,  Riccetti  M,  Perl  AKT,  2021,  Resident
               droplet microfluidic system. Adv Mater Technol, 4(6): 1–10.  interstitial lung fibroblasts and their role in alveolar stem cell
                                                                  niche development, homeostasis, injury, and regeneration.
               https://doi.org/10.1002/admt.201800632.
                                                                  Stem Cells Transl Med, 10(7): 1021–1032.
            29.  Wilkes ED, Phillips SD, Basaran OA, 1999, Computational      https://doi.org/10.1002/sctm.20-0526
               and experimental analysis of dynamics of drop formation.
               Phys Fluids, 11(12): 3577–3598.                 40.  Cacopardo  L,  Ahluwalia  A,  2021,  Engineering  and
                                                                  monitoring 3D cell constructs with time-evolving
               https://doi.org/10.1063/1.870224
                                                                  viscoelasticity for the study of liver fibrosis in vitro.
            30.  Hajikhani A, Wriggers P, Marino M, 2021, Chemo-  Bioengineering, 8(8): 106.
               mechanical modelling of swelling and crosslinking reaction
                                                                  https://doi.org/10.3390/bioengineering8080106
            Volume 9 Issue 5 (2023)                        443                          https://doi.org/10.18063/ijb.771
   446   447   448   449   450   451   452   453   454   455   456