Page 543 - IJB-9-5
P. 543

International Journal of Bioprinting                            GelMA/PEG-TA IPN networks for 3D bioprinting


               https://doi.org/10.1016/s0169-409x(01)00239-3      Biomed Mater, 14: 024102.
            2.   Guan XF, Avci-Adali M, Alarcin E, et al., 2017, Development      https://doi.org/10.1088/1748-605X/aaf31b
               of hydrogels for regenerative engineering. Biotechnol J,   13.  Yoon HJ, Shin SR, Cha JM, et al., 2016, Cold water fish gelatin
               12:1600394.
                                                                  methacryloyl hydrogel for tissue engineering application.
               https://doi.org/10.1002/biot.201600394             PLoS One, 11: e0163902.
            3.   Ouyang L, Highley CB, Sun W, et al., 2017, A generalizable      https://doi.org/10.1371/journal.pone.0163902
               strategy for the 3D bioprinting of hydrogels from nonviscous   14.  Zhu M, Wang Y, Ferracci G, et al., 2019, Gelatin methacryloyl
               photo-crosslinkable inks. Adv Mater, 29: 1604983.
                                                                  and its hydrogels with an exceptional degree of controllability
               https://doi.org/10.1002/adma.201604983             and batch-to-batch consistency. Sci Rep, 9: 6863.
            4.   Annabi N,  Tamayol  A, Uquillas JA,  et al., 2014,      https://doi.org/10.1038/s41598-019-42186-x
               25  anniversary article: Rational design and applications of   15.  Bakaic E, Smeets NM, Hoare T, 2015, Injectable hydrogels
                 th
               hydrogels in regenerative medicine. Adv Mater, 26: 85–123.
                                                                  based on poly(ethylene glycol) and derivatives as functional
               https://doi.org/10.1002/adma.201303233             biomaterials. RSC Adv, 5: 35469–35486.
            5.   Hoch E, Hirth T, Tovar GE, et al., 2013, Chemical tailoring      https://doi.org/10.1039/C4RA13581D
               of gelatin to adjust its chemical and physical properties for
               functional bioprinting. J Mater Chem B, 1: 5675–5685.   16.  Moore EM, West JL, 2019, Bioactive poly(ethylene glycol)
                                                                  acrylate hydrogels for regenerative engineering. Regen Eng
               https://doi.org/10.1039/C3TB20745E                 Transl Med, 5: 167–179.
            6.   Billiet  T, Gevaert  E,  De  Schryver  T,  et al.,  2014,  The  3D      https://doi.org/10.1007/s40883-018-0074-y
               printing of gelatin methacrylamide cell-laden tissue-
               engineered constructs with high cell viability. Biomaterials,   17.  Ooi HW, Kocken JM, Morgan FL, et al., 2020, Multivalency
               35: 49–62.                                         enables dynamic supramolecular host-guest hydrogel
                                                                  formation. Biomacromolecules, 21: 2208–2217.
               https://doi.org/10.1016/j.biomaterials.2013.09.078
                                                                  https://doi.org/10.1021/acs.biomac.0c00148
            7.   O’Connell CD, Onofrillo C, Duchi S, et al., 2019, Evaluation   18.  Sim SL,  He T, Tscheliessnig A,  et al., 2012, Branched
               of sterilisation  methods  for bio-ink components: Gelatin,   polyethylene glycol for protein precipitation.  Biotechnol
               gelatin methacryloyl, hyaluronic acid and hyaluronic acid   Bioeng, 109: 736–746.
               methacryloyl. Biofabrication, 11: 035003.
                                                                  https://doi.org/10.1002/bit.24343
               https://doi.org/10.1088/1758-5090/ab0b7c
                                                               19.  Wang J, Zhang F, Tsang WP,  et  al., 2017, Fabrication of
            8.   Choi JR, Yong KW, Choi JY, et al., 2019, Recent advances in   injectable high strength hydrogel based on 4-arm star PEG
               photo-crosslinkable hydrogels for biomedical applications.   for cartilage tissue engineering, Biomaterials, 120: 11–21.
               Biotechniques 66: 40–53.
                                                                  https://doi.org/10.1016/j.biomaterials.2016.12.015
               https://doi.org/10.2144/btn-2018-0083
                                                               20.  Skardal A, Devarasetty M, Kang HW, et al., 2015, A hydrogel
            9.   Schuurman W, Levett PA, Pot MW,  et al., 2013, Gelatin-  bioink toolkit for mimicking native tissue biochemical and
               methacrylamide hydrogels as potential biomaterials for   mechanical properties in bioprinted tissue constructs. Acta
               fabrication of tissue-engineered cartilage constructs.   Biomater, 25: 24–34.
               Macromol Biosci, 13: 551–561.
                                                                  https://doi.org/10.1016/j.actbio.2015.07.030
               https://doi.org/10.1002/mabi.201200471
                                                               21.  Rutz AL, Hyland KE, Jakus AE, et al., 2015, A multilateral
            10.  Klotz BJ, Gawlitta D, Rosenberg AJ,  et al., 2016, Gelatin-  bioink  method  for 3D  printing  tunable, cell-compatible
               methacryloyl hydrogels: Towards biofabrication-based   hydrogels. Adv Mater, 27: 1607–1614.
               tissue repair. Trends Biotechnol, 34: 394–407.
                                                                  https://doi.org/10.1002/adma.201405076
               https://doi.org/10.1016/j.tibtech.2016.01.002
                                                               22.  Liang J, Dijkstra PJ, Poot AA, et al., 2022, Hybrid hydrogels
            11.  Yue K, Trujillo-de Santiago G, Alvarez MM,  et al., 2015,
               Synthesis, properties, and biomedical applications of   based on methacrylate-functionalized gelatin (GelMA) and
               gelatin methacryloyl (GelMA) hydrogels.  Biomaterials,   synthetic polymers. Biomed Mater Devices.
               73: 254–271.                                       https://doi.org/10.1007/s44174-022-00023-2
               https://doi.org/10.1016/j.biomaterials.2015.08.045  23.  Pereira RF, Bartolo PJ, 2015, 3D bioprinting of
                                                                  photocrosslinkable hydrogel constructs.  J  Appl Polym Sci,
            12.  Liang  J, Guo  Z, Timmerman  A,  et al., 2019,  Enhanced
               mechanical and cell adhesive properties of photo-crosslinked   132: 42458–42473.
               PEG hydrogels by incorporation of gelatin in the networks.      https://doi.org/10.1002/app.42458


            Volume 9 Issue 5 (2023)                        535                         https://doi.org/10.18063/ijb.750
   538   539   540   541   542   543   544   545   546   547   548