Page 543 - IJB-9-5
P. 543
International Journal of Bioprinting GelMA/PEG-TA IPN networks for 3D bioprinting
https://doi.org/10.1016/s0169-409x(01)00239-3 Biomed Mater, 14: 024102.
2. Guan XF, Avci-Adali M, Alarcin E, et al., 2017, Development https://doi.org/10.1088/1748-605X/aaf31b
of hydrogels for regenerative engineering. Biotechnol J, 13. Yoon HJ, Shin SR, Cha JM, et al., 2016, Cold water fish gelatin
12:1600394.
methacryloyl hydrogel for tissue engineering application.
https://doi.org/10.1002/biot.201600394 PLoS One, 11: e0163902.
3. Ouyang L, Highley CB, Sun W, et al., 2017, A generalizable https://doi.org/10.1371/journal.pone.0163902
strategy for the 3D bioprinting of hydrogels from nonviscous 14. Zhu M, Wang Y, Ferracci G, et al., 2019, Gelatin methacryloyl
photo-crosslinkable inks. Adv Mater, 29: 1604983.
and its hydrogels with an exceptional degree of controllability
https://doi.org/10.1002/adma.201604983 and batch-to-batch consistency. Sci Rep, 9: 6863.
4. Annabi N, Tamayol A, Uquillas JA, et al., 2014, https://doi.org/10.1038/s41598-019-42186-x
25 anniversary article: Rational design and applications of 15. Bakaic E, Smeets NM, Hoare T, 2015, Injectable hydrogels
th
hydrogels in regenerative medicine. Adv Mater, 26: 85–123.
based on poly(ethylene glycol) and derivatives as functional
https://doi.org/10.1002/adma.201303233 biomaterials. RSC Adv, 5: 35469–35486.
5. Hoch E, Hirth T, Tovar GE, et al., 2013, Chemical tailoring https://doi.org/10.1039/C4RA13581D
of gelatin to adjust its chemical and physical properties for
functional bioprinting. J Mater Chem B, 1: 5675–5685. 16. Moore EM, West JL, 2019, Bioactive poly(ethylene glycol)
acrylate hydrogels for regenerative engineering. Regen Eng
https://doi.org/10.1039/C3TB20745E Transl Med, 5: 167–179.
6. Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D https://doi.org/10.1007/s40883-018-0074-y
printing of gelatin methacrylamide cell-laden tissue-
engineered constructs with high cell viability. Biomaterials, 17. Ooi HW, Kocken JM, Morgan FL, et al., 2020, Multivalency
35: 49–62. enables dynamic supramolecular host-guest hydrogel
formation. Biomacromolecules, 21: 2208–2217.
https://doi.org/10.1016/j.biomaterials.2013.09.078
https://doi.org/10.1021/acs.biomac.0c00148
7. O’Connell CD, Onofrillo C, Duchi S, et al., 2019, Evaluation 18. Sim SL, He T, Tscheliessnig A, et al., 2012, Branched
of sterilisation methods for bio-ink components: Gelatin, polyethylene glycol for protein precipitation. Biotechnol
gelatin methacryloyl, hyaluronic acid and hyaluronic acid Bioeng, 109: 736–746.
methacryloyl. Biofabrication, 11: 035003.
https://doi.org/10.1002/bit.24343
https://doi.org/10.1088/1758-5090/ab0b7c
19. Wang J, Zhang F, Tsang WP, et al., 2017, Fabrication of
8. Choi JR, Yong KW, Choi JY, et al., 2019, Recent advances in injectable high strength hydrogel based on 4-arm star PEG
photo-crosslinkable hydrogels for biomedical applications. for cartilage tissue engineering, Biomaterials, 120: 11–21.
Biotechniques 66: 40–53.
https://doi.org/10.1016/j.biomaterials.2016.12.015
https://doi.org/10.2144/btn-2018-0083
20. Skardal A, Devarasetty M, Kang HW, et al., 2015, A hydrogel
9. Schuurman W, Levett PA, Pot MW, et al., 2013, Gelatin- bioink toolkit for mimicking native tissue biochemical and
methacrylamide hydrogels as potential biomaterials for mechanical properties in bioprinted tissue constructs. Acta
fabrication of tissue-engineered cartilage constructs. Biomater, 25: 24–34.
Macromol Biosci, 13: 551–561.
https://doi.org/10.1016/j.actbio.2015.07.030
https://doi.org/10.1002/mabi.201200471
21. Rutz AL, Hyland KE, Jakus AE, et al., 2015, A multilateral
10. Klotz BJ, Gawlitta D, Rosenberg AJ, et al., 2016, Gelatin- bioink method for 3D printing tunable, cell-compatible
methacryloyl hydrogels: Towards biofabrication-based hydrogels. Adv Mater, 27: 1607–1614.
tissue repair. Trends Biotechnol, 34: 394–407.
https://doi.org/10.1002/adma.201405076
https://doi.org/10.1016/j.tibtech.2016.01.002
22. Liang J, Dijkstra PJ, Poot AA, et al., 2022, Hybrid hydrogels
11. Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015,
Synthesis, properties, and biomedical applications of based on methacrylate-functionalized gelatin (GelMA) and
gelatin methacryloyl (GelMA) hydrogels. Biomaterials, synthetic polymers. Biomed Mater Devices.
73: 254–271. https://doi.org/10.1007/s44174-022-00023-2
https://doi.org/10.1016/j.biomaterials.2015.08.045 23. Pereira RF, Bartolo PJ, 2015, 3D bioprinting of
photocrosslinkable hydrogel constructs. J Appl Polym Sci,
12. Liang J, Guo Z, Timmerman A, et al., 2019, Enhanced
mechanical and cell adhesive properties of photo-crosslinked 132: 42458–42473.
PEG hydrogels by incorporation of gelatin in the networks. https://doi.org/10.1002/app.42458
Volume 9 Issue 5 (2023) 535 https://doi.org/10.18063/ijb.750

