Page 544 - IJB-9-5
P. 544

International Journal of Bioprinting                            GelMA/PEG-TA IPN networks for 3D bioprinting


            24.  Decante G, Costa JB, Silva-Correia J, et al., 2021, Engineering      https://doi.org/10.1016/j.biomaterials.2017.06.039
               bioinks for 3D bioprinting. Biofabrication, 13: 032001.
                                                               34.  Xiao  W,  He  J,  Nichol  JW,  et al.,  2011,  Synthesis  and
               https://doi.org/10.1088/1758-5090/abec2c           characterization of photocrosslinkable gelatin and silk
            25.  Gao G, Yonezawa T, Hubbell K,  et al., 2015, Inkjet-  fibroin interpenetrating polymer network hydrogels.  Acta
               bioprinted acrylated peptides and PEG hydrogel with human   Biomater, 7: 2384–2393.
               mesenchymal stem cells promote robust bone and cartilage      https://doi.org/10.1016/j.actbio.2011.01.016
               formation with minimal printhead clogging.  Biotechnol  J,
               10: 1568–1577.                                  35.  Shin H, Olsen BD, Khademhosseini A, 2012, The mechanical
                                                                  properties and cytotoxicity of cell-laden double-network
               https://doi.org/10.1002/biot.201400635             hydrogels based on photocrosslinkable gelatin and gellan
            26.  Daniele MA, Adams AA, Naciri J, et al., 2014, Interpenetrating   gum biomacromolecules. Biomaterials, 33: 3143–3152.
               networks based on gelatin methacrylamide and PEG formed      https://doi.org/10.1016/j.biomaterials.2011.12.050
               using concurrent thiol click chemistries for hydrogel tissue
               engineering scaffolds. Biomaterials, 35: 1845–1856.   36.  Serban MA, Kaplan DL, 2010, pH-sensitive ionomeric
                                                                  particles obtained via chemical conjugation of silk with
               https://doi.org/10.1016/j.biomaterials.2013.11.009  poly(amino acid)s. Biomacromolecules, 11: 3406–3412.

            27.  Pacelli S, Rampetsreiter K, Modaresi S,  et al., 2018,      https://doi.org/10.1021/bm100925s
               Fabrication of a double-cross-linked interpenetrating
               polymeric network (IPN)  hydrogel  surface  modified with   37.  Park KM, Ko KS, Joung YK, et al., 2011, In situ cross-linkable
               polydopamine to modulate the osteogenic differentiation   gelatin-poly(ethylene glycol)-tyramine hydrogel viaenzyme-
               of adipose-derived stem cells.  ACS Appl Mater Interfaces,   mediated reaction for tissue regenerative medicine. J Mater
               10: 24955–24962.                                   Chem, 21: 13180–13187.
               https://doi.org/10.1021/acsami.8b05200             https://doi.org/10.1039/C1JM12527C
            28.  Schipani R, Scheurer S, Florentin R, et al., 2020, Reinforcing   38.  Jin R, Teixeira LS, Dijkstra PJ, et al., 2010, Enzymatically-
               interpenetrating network hydrogels with 3D printed   crosslinked injectable hydrogels based on biomimetic
               polymer networks to engineer cartilage mimetic composites.   dextran-hyaluronic  acid  conjugates  for  cartilage  tissue
               Biofabrication, 12: 035011.                        engineering. Biomaterials, 31: 3103–3113.
               https://doi.org/10.1088/1758-5090/ab8708           https://doi.org/10.1016/j.biomaterials.2010.01.013
            29.  Zhang X, Kim GJ, Kang MG, et al., 2018, Marine biomaterial-  39.  Wang R, Leber N, Buhl C, et al., 2014, Cartilage adhesive
               based bioinks for generating 3D printed tissue constructs.   and mechanical properties of enzymatically crosslinked
               Mar Drugs, 16: 484.                                polysaccharide tyramine conjugate hydrogels. Polym Advan
                                                                  Technol, 25: 568–574.
               https://doi.org/10.3390/md16120484
                                                                  https://doi.org/10.1002/pat.3286
            30.  Jeon O, Shin JY, Marks R, et al., 2017, Highly elastic and
               tough interpenetrating polymer network-structured hybrid   40.  Wei Q, Xu M, Liao C, et al., 2016, Printable hybrid hydrogel
               hydrogels for cyclic mechanical loading-enhanced tissue   by dual enzymatic polymerization with superactivity. Chem
               engineering. Chem Mater, 29: 8425–8432.            Sci, 7: 2748–2752.
               https://doi.org/10.1021/acs.chemmater.7b02995      https://doi.org/10.1039/C5SC02234G
            31.  Seyedmahmoud R, Çelebi-Saltik B, Barros N, et al., 2019,   41.  Wang R, Both SK, Geven M, et al., 2015, Kinetically stable
               Three-dimensional bioprinting of functional skeletal   metal  ligand  charge  transfer  complexes  as  crosslinks  in
               muscle tissue using gelatin methacryloyl-alginate bioinks.   nanogels/hydrogels: Physical properties and cytotoxicity.
               Micromachines (Basel), 10: 679.                    Acta Biomater, 26: 136–144.
               https://doi.org/10.3390/mi10100679                 https://doi.org/10.1016/j.actbio.2015.08.019
            32.  Fares MM, Sani ES, Lara RP, et al., 2018, Interpenetrating   42.  Fantini V, Bordoni M, Scocozza F,  et al., 2019, Bioink
               network  gelatin  methacryloyl  (GelMA)  and  pectin-g-PCL   composition and  printing parameters for  3D  modeling
               hydrogels with tunable properties for tissue engineering.   neural tissue. Cells, 8:830.
               Biomater Sci, 6: 2938–2950.
                                                                  https://doi.org/10.3390/cells8080830
               https://doi.org/10.1039/c8bm00474a
                                                               43.  Wang R, Huang X, Zoetebier B,  et al., 2023, Enzymatic
            33.  Berger AJ, Linsmeier KM, Kreeger PK,  et  al., 2017,   co-crosslinking of star-shaped poly(ethylene glycol)
               Decoupling the effects of stiffness and fiber density on   tyramine and hyaluronic acid tyramine conjugates provides
               cellular behaviors via an interpenetrating network of gelatin-  elastic biocompatible and biodegradable hydrogels.  Bioact
               methacrylate and collagen. Biomaterials, 141: 125–135.   Mater, 20: 53–63.


            Volume 9 Issue 5 (2023)                        536                         https://doi.org/10.18063/ijb.750
   539   540   541   542   543   544   545   546   547   548   549