Page 101 - IJB-9-6
P. 101

International Journal of Bioprinting                                     Review of 3D bioprinted organoids



               https://doi.org/10.1179/1743280414Y.0000000040  75.  Vijayavenkataraman S, Yan W-C, Lu WF, et al., 2018, 3D
                                                                  bioprinting of tissues and organs for regenerative medicine.
            63.  Li X, Liu B, Pei B,  et al., 2020, Inkjet bioprinting of
               biomaterials. Chem Rev, 120(19): 10793–10833.      Adv Drug Deliv Rev, 132: 296–332.
                                                                  https://doi.org/10.1016/j.addr.2018.07.004
               https://doi.org/10.1021/acs.chemrev.0c00008
                                                               76.  Ng WL, Lee JM, Yeong WY, et al., 2017, Microvalve-based
            64.  Zhao D, Xu H, Yin J, et al., 2022, Inkjet 3D bioprinting for
               tissue engineering and pharmaceutics. J Zhejiang Univ Sci A,   bioprinting – process, bio-inks and applications. Biomater
               23(12): 955–973.                                   Sci, 5(4): 632–647.
                                                                  https://doi.org/10.1039/C6BM00861E
               https://doi.org/10.1631/2023.A2200569
                                                               77.  Faulkner-Jones  A,  Greenhough  S,  King  J,  et al.,  2013,
            65.  Ventura RD, 2021, An overview of laser-assisted bioprinting
               (LAB) in tissue engineering applications. Med Lasers, 10(2):   Development of a valve-based cell printer for the formation
               76–81.                                             of human embryonic stem cell spheroid aggregates.
                                                                  Biofabrication, 5(1): 015013.
               https://doi.org/10.25289/ML.2021.10.2.76
                                                                  https://doi.org/10.1088/1758-5082/5/1/015013
            66.  Dou C, Perez V, Qu J, et al., 2021, A state‐of‐the‐art review
               of laser‐assisted bioprinting and its future research trends.   78.  Matai I, Kaur G, Seyedsalehi A,  et al., 2020, Progress in
               CBEN, 8(5): 517–534.                               3D bioprinting technology for tissue/organ regenerative
                                                                  engineering. Biomaterials, 226: 119536.
               https://doi.org/10.1002/cben.202000037
                                                                  https://doi.org/10.1016/j.biomaterials.2019.119536
            67.  Murphy SV, Atala A, 2014, 3D bioprinting of tissues and
               organs. Nat Biotechnol, 32(8): 773–785.         79.  Lee JM, Sing SL, Zhou M,  et al., 2018, 3D bioprinting
                                                                  processes: A perspective on classification and terminology.
               https://doi.org/10.1038/nbt.2958                   Int J Bioprint, 4(2): 151.
            68.  Huang Y, Zhang X-F, Gao G, et al., 2017, 3D bioprinting and   https://doi.org/10.18063/ijb.v4i2.151
               the current applications in tissue engineering. Biotechnol J,
               12(8): 1600734.                                 80.  Adine C, Ferreira J, 2020, Bioprinting strategies to engineer
                                                                  functional salivary gland organoids,  in  Organ Tissue
               https://doi.org/10.1002/biot.201600734             Engineering, Springer International Publishing, Cham, 1–22.
            69.  Zheng Z, Eglin D, Alini M, et al., 2021, Visible light-induced   https://doi.org/10.1007/978-3-030-18512-1_5-1
               3D bioprinting technologies and corresponding bioink
               materials for tissue engineering: A review. Engineering, 7(7):   81.  Grebenyuk  S,  Ranga  A,  2019,  Engineering  organoid
               966–978.                                           vascularization. Front Bioeng Biotechnol, 7: 39.
                                                                  https://doi.org/10.3389/fbioe.2019.00039
               https://doi.org/10.1016/j.eng.2020.05.021
                                                               82.  Przepiorski A, Sander V, Tran T,  et al., 2018, A simple
            70.  Grix T, Ruppelt A, Thomas A,  et al., 2018, Bioprinting
               perfusion-enabled liver equivalents for advanced organ-on-  bioreactor-based method to generate kidney organoids from
               a-chip applications. Genes, 9(4): 176.             pluripotent stem cells. Stem Cell Rep, 11(2): 470–484.
                                                                  https://doi.org/10.1016/j.stemcr.2018.06.018
               https://doi.org/10.3390/genes9040176
                                                               83.  Zhang Y, Kumar P, Lv S, et al., 2021, Recent advances in 3D
            71.  Goodarzi Hosseinabadi H, Dogan E, Miri AK, et al., 2022,
               Digital light processing bioprinting advances for microtissue   bioprinting of vascularized tissues. Mater Design, 199: 109398.
               models. ACS Biomater Sci Eng, 8(4): 1381–1395.     https://doi.org/10.1016/j.matdes.2020.109398
               https://doi.org/10.1021/acsbiomaterials.1c01509  84.  Barrs RW, Jia J, Silver SE,  et al., 2020, Biomaterials
                                                                  for bioprinting microvasculature.  Chem Rev, 120(19):
            72.  Xie C, Liang R, Ye J, et al., 2022, High-efficient engineering
               of osteo-callus organoids for rapid bone regeneration within   10887–10949.
               one month. Biomaterials, 288: 121741.              https://doi.org/10.1021/acs.chemrev.0c00027
               https://doi.org/10.1016/j.biomaterials.2022.121741  85.  Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D
                                                                  bioprinting of perfusable vascular constructs using a blend
            73.  Li H, Dai J, Wang Z, et al., 2022, Digital light processing
               (DLP)‐based (bio)printing strategies for tissue modeling   bioink. Biomaterials, 106: 58–68.
               and regeneration. Aggregate, 4(2): e270.           https://doi.org/10.1016/j.biomaterials.2016.07.038
               https://doi.org/10.1002/agt2.270                86.  Hong S, Kim JS, Jung B,  et al., 2019, Coaxial bioprinting
                                                                  of cell-laden vascular constructs using a gelatin–tyramine
            74.  Xu H, Su Y, Liao Z, et al., 2022, Coaxial bioprinting vascular
               constructs: A review. Eur Polym J, 179: 111549.    bioink. Biomater Sci, 7(11): 4578–4587.
                                                                  https://doi.org/10.1039/C8BM00618K
               https://doi.org/10.1016/j.eurpolymj.2022.111549

            Volume 9 Issue 6 (2023)                         93                         https://doi.org/10.36922/ijb.0112
   96   97   98   99   100   101   102   103   104   105   106