Page 101 - IJB-9-6
P. 101
International Journal of Bioprinting Review of 3D bioprinted organoids
https://doi.org/10.1179/1743280414Y.0000000040 75. Vijayavenkataraman S, Yan W-C, Lu WF, et al., 2018, 3D
bioprinting of tissues and organs for regenerative medicine.
63. Li X, Liu B, Pei B, et al., 2020, Inkjet bioprinting of
biomaterials. Chem Rev, 120(19): 10793–10833. Adv Drug Deliv Rev, 132: 296–332.
https://doi.org/10.1016/j.addr.2018.07.004
https://doi.org/10.1021/acs.chemrev.0c00008
76. Ng WL, Lee JM, Yeong WY, et al., 2017, Microvalve-based
64. Zhao D, Xu H, Yin J, et al., 2022, Inkjet 3D bioprinting for
tissue engineering and pharmaceutics. J Zhejiang Univ Sci A, bioprinting – process, bio-inks and applications. Biomater
23(12): 955–973. Sci, 5(4): 632–647.
https://doi.org/10.1039/C6BM00861E
https://doi.org/10.1631/2023.A2200569
77. Faulkner-Jones A, Greenhough S, King J, et al., 2013,
65. Ventura RD, 2021, An overview of laser-assisted bioprinting
(LAB) in tissue engineering applications. Med Lasers, 10(2): Development of a valve-based cell printer for the formation
76–81. of human embryonic stem cell spheroid aggregates.
Biofabrication, 5(1): 015013.
https://doi.org/10.25289/ML.2021.10.2.76
https://doi.org/10.1088/1758-5082/5/1/015013
66. Dou C, Perez V, Qu J, et al., 2021, A state‐of‐the‐art review
of laser‐assisted bioprinting and its future research trends. 78. Matai I, Kaur G, Seyedsalehi A, et al., 2020, Progress in
CBEN, 8(5): 517–534. 3D bioprinting technology for tissue/organ regenerative
engineering. Biomaterials, 226: 119536.
https://doi.org/10.1002/cben.202000037
https://doi.org/10.1016/j.biomaterials.2019.119536
67. Murphy SV, Atala A, 2014, 3D bioprinting of tissues and
organs. Nat Biotechnol, 32(8): 773–785. 79. Lee JM, Sing SL, Zhou M, et al., 2018, 3D bioprinting
processes: A perspective on classification and terminology.
https://doi.org/10.1038/nbt.2958 Int J Bioprint, 4(2): 151.
68. Huang Y, Zhang X-F, Gao G, et al., 2017, 3D bioprinting and https://doi.org/10.18063/ijb.v4i2.151
the current applications in tissue engineering. Biotechnol J,
12(8): 1600734. 80. Adine C, Ferreira J, 2020, Bioprinting strategies to engineer
functional salivary gland organoids, in Organ Tissue
https://doi.org/10.1002/biot.201600734 Engineering, Springer International Publishing, Cham, 1–22.
69. Zheng Z, Eglin D, Alini M, et al., 2021, Visible light-induced https://doi.org/10.1007/978-3-030-18512-1_5-1
3D bioprinting technologies and corresponding bioink
materials for tissue engineering: A review. Engineering, 7(7): 81. Grebenyuk S, Ranga A, 2019, Engineering organoid
966–978. vascularization. Front Bioeng Biotechnol, 7: 39.
https://doi.org/10.3389/fbioe.2019.00039
https://doi.org/10.1016/j.eng.2020.05.021
82. Przepiorski A, Sander V, Tran T, et al., 2018, A simple
70. Grix T, Ruppelt A, Thomas A, et al., 2018, Bioprinting
perfusion-enabled liver equivalents for advanced organ-on- bioreactor-based method to generate kidney organoids from
a-chip applications. Genes, 9(4): 176. pluripotent stem cells. Stem Cell Rep, 11(2): 470–484.
https://doi.org/10.1016/j.stemcr.2018.06.018
https://doi.org/10.3390/genes9040176
83. Zhang Y, Kumar P, Lv S, et al., 2021, Recent advances in 3D
71. Goodarzi Hosseinabadi H, Dogan E, Miri AK, et al., 2022,
Digital light processing bioprinting advances for microtissue bioprinting of vascularized tissues. Mater Design, 199: 109398.
models. ACS Biomater Sci Eng, 8(4): 1381–1395. https://doi.org/10.1016/j.matdes.2020.109398
https://doi.org/10.1021/acsbiomaterials.1c01509 84. Barrs RW, Jia J, Silver SE, et al., 2020, Biomaterials
for bioprinting microvasculature. Chem Rev, 120(19):
72. Xie C, Liang R, Ye J, et al., 2022, High-efficient engineering
of osteo-callus organoids for rapid bone regeneration within 10887–10949.
one month. Biomaterials, 288: 121741. https://doi.org/10.1021/acs.chemrev.0c00027
https://doi.org/10.1016/j.biomaterials.2022.121741 85. Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D
bioprinting of perfusable vascular constructs using a blend
73. Li H, Dai J, Wang Z, et al., 2022, Digital light processing
(DLP)‐based (bio)printing strategies for tissue modeling bioink. Biomaterials, 106: 58–68.
and regeneration. Aggregate, 4(2): e270. https://doi.org/10.1016/j.biomaterials.2016.07.038
https://doi.org/10.1002/agt2.270 86. Hong S, Kim JS, Jung B, et al., 2019, Coaxial bioprinting
of cell-laden vascular constructs using a gelatin–tyramine
74. Xu H, Su Y, Liao Z, et al., 2022, Coaxial bioprinting vascular
constructs: A review. Eur Polym J, 179: 111549. bioink. Biomater Sci, 7(11): 4578–4587.
https://doi.org/10.1039/C8BM00618K
https://doi.org/10.1016/j.eurpolymj.2022.111549
Volume 9 Issue 6 (2023) 93 https://doi.org/10.36922/ijb.0112

