Page 99 - IJB-9-6
P. 99
International Journal of Bioprinting Review of 3D bioprinted organoids
bioink and human neural stem cells. Adv Healthc Mater, 29. Koo Y, Kim GH, 2022, Bioprinted hASC‐laden collagen/
5(12): 1429–1438. HA constructs with meringue‐like macro/micropores.
Bioeng Transl Med, 7(3): e10330.
https://doi.org/10.1002/adhm.201600095
https://doi.org/10.1002/btm2.10330
19. Faulkner-Jones A, Fyfe C, Cornelissen D-J, et al., 2015,
Bioprinting of human pluripotent stem cells and their 30. Sorkio A, Koch L, Koivusalo L, et al., 2018, Human stem
directed differentiation into hepatocyte-like cells for the cell based corneal tissue mimicking structures using laser-
generation of mini-livers in 3D. Biofabrication, 7(4): 044102. assisted 3D bioprinting and functional bioinks. Biomaterials,
171: 57–71.
https://doi.org/10.1088/1758-5090/7/4/044102
https://doi.org/10.1016/j.biomaterials.2018.04.034
20. Nguyen D, Hägg DA, Forsman A, et al., 2017, Cartilage
tissue engineering by the 3D bioprinting of iPS cells in a 31. Moncal KK, Ozbolat V, Datta P, et al., 2019, Thermally-
nanocellulose/alginate bioink. Sci Rep, 7(1): 658. controlled extrusion-based bioprinting of collagen. J Mater
Sci, 30(5): 55.
https://doi.org/10.1038/s41598-017-00690-y
https://doi.org/10.1007/s10856-019-6258-2
21. Sakai S, Ohi H, Hotta T, et al., 2018, Differentiation potential
of human adipose stem cells bioprinted with hyaluronic acid/ 32. Pati F, Jang J, Ha D-H, et al., 2014, Printing three-dimensional
gelatin-based bioink through microextrusion and visible light- tissue analogues with decellularized extracellular matrix
initiated crosslinking. Biopolymers, 109(2): e23080. bioink. Nat Commun, 5(1): 3935.
https://doi.org/10.1002/bip.23080 https://doi.org/10.1038/ncomms4935
22. Eswaramoorthy SD, Dhiman N, Joshi A, et al., 2021, 3D 33. Gao G, Yonezawa T, Hubbell K, et al., 2015, Inkjet-
bioprinting of mesenchymal stem cells and endothelial cells in bioprinted acrylated peptides and PEG hydrogel with human
an alginate-gelatin-based bioink. J 3D Print Med, 5(1): 23–36. mesenchymal stem cells promote robust bone and cartilage
formation with minimal printhead clogging. Biotechnol J,
https://doi.org/10.2217/3dp-2020-0026 10(10): 1568–1577.
23. Kolan KCR, Semon JA, Bromet B, et al., 2019, Bioprinting with https://doi.org/10.1002/biot.201400635
human stem cells-laden alginate-gelatin bioink and bioactive
glass for tissue engineering. Int J Bioprint, 5(2.2): 3–15. 34. Gao G, Schilling AF, Hubbell K, et al., 2015, Improved
properties of bone and cartilage tissue from 3D inkjet-
https://doi.org/10.18063/ijb.v5i2.2.204 bioprinted human mesenchymal stem cells by simultaneous
24. Ni T, Liu M, Zhang Y, et al., 2020, 3D bioprinting of bone deposition and photocrosslinking in PEG-GelMA.
marrow mesenchymal stem cell-laden silk fibroin double Biotechnol Lett, 37(11): 2349–2355.
network scaffolds for cartilage tissue repair. Bioconjugate https://doi.org/10.1007/s10529-015-1921-2
Chem, 31: 1938–1947.
35. Armstrong JPK, Burke M, Carter BM, et al., 2016, 3D
https://doi.org/10.1021/acs.bioconjchem.0c00298 bioprinting using a templated porous bioink. Adv Healthc
25. Das S, Pati F, Choi Y-J, et al., 2015, Bioprintable, cell-laden Mater, 5(14): 1724–1730.
silk fibroin–gelatin hydrogel supporting multilineage https://doi.org/10.1002/adhm.201600022
differentiation of stem cells for fabrication of three- 36. Jia J, Richards DJ, Pollard S, et al., 2014, Engineering alginate
dimensional tissue constructs. Acta Biomater, 11: 233–246.
as bioink for bioprinting. Acta Biomater, 10(10): 4323–4331.
https://doi.org/10.1016/j.actbio.2014.09.023 https://doi.org/10.1016/j.actbio.2014.06.034
26. Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted 37. Wu Z, Su X, Xu Y, et al., 2016, Bioprinting three-dimensional
amniotic fluid-derived stem cells accelerate healing of large cell-laden tissue constructs with controllable degradation.
skin wounds. Stem Cells Translat Med, 1(11): 792–802. Sci Rep, 6(1): 1–10.
https://doi.org/10.5966/sctm.2012-0088 https://doi.org/10.1038/srep24474
27. Han J, Kim DS, Jang H, et al., 2019, Bioprinting of three- 38. He H, Li D, Lin Z, et al., 2020, Temperature-programmable
dimensional dentin–pulp complex with local differentiation and enzymatically solidifiable gelatin-based bioinks enable
of human dental pulp stem cells. J Tissue Eng, 10: facile extrusion bioprinting. Biofabrication, 12(4): 045003.
2041731419845849.
https://doi.org/10.1088/1758-5090/ab9906
https://doi.org/10.1177/2041731419845849
39. Li J, Moeinzadeh S, Kim C, et al., 2023, Development and
28. Ren Y, Yang X, Ma Z, et al., 2021, Developments and systematic characterization of GelMA/alginate/PEGDMA/
opportunities for 3D bioprinted organoids. Int J Bioprint, xanthan gum hydrogel bioink system for extrusion
7(3): 18–36. bioprinting. Biomaterials, 293: 121969.
https://doi.org/10.18063/ijb.v7i3.364 https://doi.org/10.1016/j.biomaterials.2022.121969
Volume 9 Issue 6 (2023) 91 https://doi.org/10.36922/ijb.0112

