Page 99 - IJB-9-6
P. 99

International Journal of Bioprinting                                     Review of 3D bioprinted organoids



               bioink  and  human  neural  stem  cells.  Adv Healthc Mater,   29.  Koo Y, Kim GH, 2022, Bioprinted  hASC‐laden collagen/
               5(12): 1429–1438.                                  HA constructs with meringue‐like macro/micropores.
                                                                  Bioeng Transl Med, 7(3): e10330.
               https://doi.org/10.1002/adhm.201600095
                                                                  https://doi.org/10.1002/btm2.10330
            19.  Faulkner-Jones A, Fyfe C, Cornelissen D-J,  et al., 2015,
               Bioprinting of human pluripotent stem cells and their   30.  Sorkio A, Koch L, Koivusalo L, et al., 2018, Human stem
               directed differentiation into hepatocyte-like cells for the   cell based corneal tissue mimicking structures using laser-
               generation of mini-livers in 3D. Biofabrication, 7(4): 044102.  assisted 3D bioprinting and functional bioinks. Biomaterials,
                                                                  171: 57–71.
               https://doi.org/10.1088/1758-5090/7/4/044102
                                                                  https://doi.org/10.1016/j.biomaterials.2018.04.034
            20.  Nguyen  D,  Hägg  DA,  Forsman  A,  et al.,  2017,  Cartilage
               tissue engineering by the 3D bioprinting of iPS cells in a   31.  Moncal KK, Ozbolat V, Datta P,  et  al., 2019, Thermally-
               nanocellulose/alginate bioink. Sci Rep, 7(1): 658.  controlled extrusion-based bioprinting of collagen. J Mater
                                                                  Sci, 30(5): 55.
               https://doi.org/10.1038/s41598-017-00690-y
                                                                  https://doi.org/10.1007/s10856-019-6258-2
            21.  Sakai S, Ohi H, Hotta T, et al., 2018, Differentiation potential
               of human adipose stem cells bioprinted with hyaluronic acid/  32.  Pati F, Jang J, Ha D-H, et al., 2014, Printing three-dimensional
               gelatin-based bioink through microextrusion and visible light-  tissue analogues with decellularized extracellular matrix
               initiated crosslinking. Biopolymers, 109(2): e23080.  bioink. Nat Commun, 5(1): 3935.
               https://doi.org/10.1002/bip.23080                  https://doi.org/10.1038/ncomms4935
            22.  Eswaramoorthy SD, Dhiman N, Joshi A,  et al., 2021, 3D   33.  Gao G, Yonezawa T, Hubbell K,  et  al., 2015, Inkjet-
               bioprinting of mesenchymal stem cells and endothelial cells in   bioprinted acrylated peptides and PEG hydrogel with human
               an alginate-gelatin-based bioink. J 3D Print Med, 5(1): 23–36.  mesenchymal stem cells promote robust bone and cartilage
                                                                  formation with minimal printhead clogging.  Biotechnol J,
               https://doi.org/10.2217/3dp-2020-0026              10(10): 1568–1577.
            23.  Kolan KCR, Semon JA, Bromet B, et al., 2019, Bioprinting with   https://doi.org/10.1002/biot.201400635
               human stem cells-laden alginate-gelatin bioink and bioactive
               glass for tissue engineering. Int J Bioprint, 5(2.2): 3–15.  34.  Gao G, Schilling AF, Hubbell K,  et  al., 2015, Improved
                                                                  properties of bone and cartilage tissue from 3D inkjet-
               https://doi.org/10.18063/ijb.v5i2.2.204            bioprinted human mesenchymal stem cells by simultaneous
            24.  Ni T, Liu M, Zhang Y, et al., 2020, 3D bioprinting of bone   deposition and photocrosslinking in PEG-GelMA.
               marrow mesenchymal stem cell-laden silk fibroin double   Biotechnol Lett, 37(11): 2349–2355.
               network scaffolds for cartilage tissue repair.  Bioconjugate   https://doi.org/10.1007/s10529-015-1921-2
               Chem, 31: 1938–1947.
                                                               35.  Armstrong JPK, Burke M, Carter BM,  et  al., 2016, 3D
               https://doi.org/10.1021/acs.bioconjchem.0c00298    bioprinting using a templated porous bioink. Adv Healthc
            25.  Das S, Pati F, Choi Y-J, et al., 2015, Bioprintable, cell-laden   Mater, 5(14): 1724–1730.
               silk  fibroin–gelatin  hydrogel supporting  multilineage   https://doi.org/10.1002/adhm.201600022
               differentiation of stem cells for fabrication of three-  36.  Jia J, Richards DJ, Pollard S, et al., 2014, Engineering alginate
               dimensional tissue constructs. Acta Biomater, 11: 233–246.
                                                                  as bioink for bioprinting. Acta Biomater, 10(10): 4323–4331.
               https://doi.org/10.1016/j.actbio.2014.09.023       https://doi.org/10.1016/j.actbio.2014.06.034
            26.  Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted   37.  Wu Z, Su X, Xu Y, et al., 2016, Bioprinting three-dimensional
               amniotic fluid-derived stem cells accelerate healing of large   cell-laden tissue constructs with controllable degradation.
               skin wounds. Stem Cells Translat Med, 1(11): 792–802.  Sci Rep, 6(1): 1–10.
               https://doi.org/10.5966/sctm.2012-0088             https://doi.org/10.1038/srep24474
            27.  Han J, Kim DS, Jang H, et al., 2019, Bioprinting of three-  38.  He H, Li D, Lin Z, et al., 2020, Temperature-programmable
               dimensional dentin–pulp complex with local differentiation   and enzymatically solidifiable gelatin-based bioinks enable
               of human dental pulp stem cells.  J Tissue Eng,  10:    facile extrusion bioprinting. Biofabrication, 12(4): 045003.
               2041731419845849.
                                                                  https://doi.org/10.1088/1758-5090/ab9906
               https://doi.org/10.1177/2041731419845849
                                                               39.  Li J, Moeinzadeh S, Kim C, et al., 2023, Development and
            28.  Ren Y, Yang X, Ma Z,  et  al., 2021, Developments and   systematic characterization of GelMA/alginate/PEGDMA/
               opportunities for 3D bioprinted organoids.  Int J Bioprint,   xanthan  gum  hydrogel  bioink system  for extrusion
               7(3): 18–36.                                       bioprinting. Biomaterials, 293: 121969.
               https://doi.org/10.18063/ijb.v7i3.364              https://doi.org/10.1016/j.biomaterials.2022.121969


            Volume 9 Issue 6 (2023)                         91                         https://doi.org/10.36922/ijb.0112
   94   95   96   97   98   99   100   101   102   103   104