Page 98 - IJB-9-6
P. 98
International Journal of Bioprinting Review of 3D bioprinted organoids
Funding 7. Takasato M, Er PX, Chiu HS, et al., 2015, Kidney organoids
from human iPS cells contain multiple lineages and model
This work is funded by the financial support from National human nephrogenesis. Nature, 526(7574): 564–568.
Natural Science Foundation of China (62122017).
https://doi.org/10.1038/nature15695
Conflict of interest 8. Hu H, Gehart H, Artegiani B, et al., 2018, Long-term
The authors declare no conflict of interest. expansion of functional mouse and human hepatocytes as
3D organoids. Cell, 175(6): 1591–1606.e19.
Author contributions https://doi.org/10.1016/j.cell.2018.11.013
Conceptualization: Chen He, Jiasheng Yan 9. Lancaster MA, Renner M, Martin C-A, et al., 2013,
Funding acquisition: Jinhong Guo Cerebral organoids model human brain development and
Project administration: Jinhong Guo microcephaly. Nature, 501(7467): 373–379.
Supervision: Yusheng Fu, Jiuchuan Guo, Yuxing Shi https://doi.org/10.1038/nature12517
Writing - original draft: Chen He, Jiasheng Yan 10. Neal JT, Li X, Zhu J, et al., 2018, Organoid modeling of the tumor
Writing - review & editing: Chen He, Jiasheng Yan
immune microenvironment. Cell, 175(7): 1972–1988.e16.
Ethics approval and consent to participate https://doi.org/10.1016/j.cell.2018.11.021
Not applicable. 11. Monteil V, Kwon H, Prado P, et al., 2020, Inhibition of
SARS-CoV-2 infections in engineered human tissues
Consent for publication using clinical-grade soluble human ACE2. Cell, 181(4):
905–913.e7.
Not applicable.
https://doi.org/10.1016/j.cell.2020.04.004
Availability of data 12. Han Y, Duan X, Yang L, et al., 2021, Identification of SARS-
Not applicable. CoV-2 inhibitors using lung and colonic organoids. Nature,
589(7841): 270–275.
References https://doi.org/10.1038/s41586-020-2901-9
1. Lancaster MA, Knoblich JA, 2014, Organogenesis in a 13. Garreta E, Kamm RD, Chuva de Sousa Lopes SM, et al., 2021,
dish: Modeling development and disease using organoid Rethinking organoid technology through bioengineering.
technologies. Science, 345(6194): 1247125. Nat Mater, 20(2): 145–155.
https://doi.org/10.1126/science.1247125 https://doi.org/10.1038/s41563-020-00804-4
2. Hofer M, Lutolf MP, 2021, Engineering organoids. Nat Rev 14. Lawlor KT, Vanslambrouck JM, Higgins JW, et al., 2021,
Mater, 6(5): 402–420. Cellular extrusion bioprinting improves kidney organoid
https://doi.org/10.1038/s41578-021-00279-y reproducibility and conformation. Nat Mater, 20(2):
260–271.
3. Zhao Z, Chen X, Dowbaj AM, et al., 2022, Organoids. Nat
Rev Methods Primers, 2(1): 94. https://doi.org/10.1038/s41563-020-00853-9
https://doi.org/10.1038/s43586-022-00174-y 15. Rawal P, Tripathi DM, Ramakrishna S, et al., 2021, Prospects
for 3D bioprinting of organoids. Bio-Des Manuf, 4(3):
4. Sato T, Vries RG, Snippert HJ, et al., 2009, Single Lgr5 627–640.
stem cells build crypt-villus structures in vitro without a
mesenchymal niche. Nature, 459(7244): 262–265. https://doi.org/10.1007/s42242-020-00124-1
https://doi.org/10.1038/nature07935 16. Gu Z, Fu J, Lin H, et al., 2020, Development of 3D bioprinting:
From printing methods to biomedical applications. Asian
5. Lewis-Israeli YR, Wasserman AH, Gabalski MA, et al., 2021, J Pharm Sci, 15(5): 529–557.
Self-assembling human heart organoids for the modeling
of cardiac development and congenital heart disease. Nat https://doi.org/10.1016/j.ajps.2019.11.003
Commun, 12(1): 5142. 17. Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks
https://doi.org/10.1038/s41467-021-25329-5 for 3D bioprinting: An overview. Biomater Sci, 6(5):
915–946.
6. Hofbauer P, Jahnel SM, Papai N, et al., 2021, Cardioids
reveal self-organizing principles of human cardiogenesis. https://doi.org/10.1039/C7BM00765E
Cell, 184(12): 3299–3317.e22.
18. Gu Q, Tomaskovic‐Crook E, Lozano R, et al., 2016,
https://doi.org/10.1016/j.cell.2021.04.034 Functional 3D neural mini‐tissues from printed gel‐based
Volume 9 Issue 6 (2023) 90 https://doi.org/10.36922/ijb.0112

