Page 100 - IJB-9-6
P. 100

International Journal of Bioprinting                                     Review of 3D bioprinted organoids



            40.  Yu K-F, Lu T-Y, Li Y-CE, et al., 2022, Design and synthesis of   51.  Gong Z, Huang L, Tang X,  et al., 2021, Acoustic droplet
               stem cell-laden keratin/glycol chitosan methacrylate bioinks   printing tumor organoids for modeling bladder tumor
               for 3D bioprinting. Biomacromolecules, 23(7): 2814–2826.  immune microenvironment within a week.  Adv  Healthc
                                                                  Mater, 10(22): 2101312.
               https://doi.org/10.1021/acs.biomac.2c00191
                                                                  https://doi.org/10.1002/adhm.202101312
            41.  Alcala-Orozco CR, Mutreja I, Cui X,  et al., 2020, Design
               and characterisation of multi-functional strontium-gelatin   52.  Adine C, Ng KK, Rungarunlert S, et al., 2018, Engineering
               nanocomposite bioinks with improved print fidelity and   innervated secretory epithelial organoids by magnetic three-
               osteogenic capacity. Bioprinting, 18: e00073.      dimensional bioprinting for stimulating epithelial growth in
               https://doi.org/10.1016/j.bprint.2019.e00073       salivary glands. Biomaterials, 180: 52–66.
            42.  Rousselle A, Ferrandon A, Mathieu E, et al., 2022, Enhancing   https://doi.org/10.1016/j.biomaterials.2018.06.011
               cell survival in 3D printing of organoids using innovative   53.  Pati F, Jang J, Lee JW, et al., 2015, Extrusion bioprinting, in
               bioinks loaded with pre-cellularized porous microscaffolds.   Essentials of 3D Biofabrication and Translation, Academic
               Bioprinting, 28: e00247.                           Press, Boston, 123–152.
               https://doi.org/10.1016/j.bprint.2022.e00247       https://doi.org/10.1016/B978-0-12-800972-7.00007-4
            43.  Cofiño C, Perez‐Amodio S, Semino CE,  et al., 2019,   54.  Shinkar K, Rhode K, 2022, Could 3D extrusion bioprinting
               Development of a self‐assembled peptide/methylcellulose‐  serve to be a real alternative to organ transplantation in the
               based bioink for 3D bioprinting.  Macromol Mater Eng,   future? Ann 3D Print Med, 7: 100066.
               304(11): 1900353.
                                                                  https://doi.org/10.1016/j.stlm.2022.100066
               https://doi.org/10.1002/mame.201900353
                                                               55.  Lim W, Kim GJ, Kim HW, et al., 2020, Kappa-Carrageenan-
            44.  Alhattab D, Khan Z, Alshehri S, et al., 2023, 3D bioprinting   based dual crosslinkable bioink for extrusion type
               of ultrashort self-assembling peptides to engineer scaffolds   bioprinting. Polymers, 12(10): 2377.
               with different matrix stiffness for chondrogenesis.
               Int J Bioprint, 9(4): 719.                         https://doi.org/10.3390/polym12102377
               https://doi.org/10.18063/ijb.719                56.  Moxon SR, Cooke ME, Cox SC,  et al., 2017, Suspended
                                                                  manufacture of biological structures.  Adv Mater, 29(13):
            45.  Jeong W, Kim MK, Kang H-W, 2021, Effect of detergent   1605594.
               type on the performance of liver decellularized extracellular
               matrix-based bio-inks. J Tissue Eng, 12: 2041731421997091.  https://doi.org/10.1002/adma.201605594
               https://doi.org/10.1177/2041731421997091        57.  Cooke ME, Rosenzweig DH, 2021, The rheology of direct and
                                                                  suspended extrusion bioprinting. APL Bioeng, 5(1): 011502.
            46.  Panwar A, Tan L, 2016, Current status of bioinks for micro-
               extrusion-based 3D bioprinting. Molecules, 21(6): 685.  https://doi.org/10.1063/5.0031475
               https://doi.org/10.3390/molecules21060685       58.  Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting
                                                                  of collagen to rebuild components of the human heart.
            47.  Xu Z, Huang J, Liu Y, et al., 2023, Extracellular matrix bioink
               boosts stemness and facilitates transplantation of intestinal   Science, 365(6452): 482–487.
               organoids as a biosafe Matrigel alternative. Bioeng Transl Med,   https://doi.org/10.1126/science.aav9051
               8(1): e10327.
                                                               59.  McCormack A, Highley CB, Leslie NR,  et al., 2020, 3D
               https://doi.org/10.1002/btm2.10327                 printing in suspension baths: Keeping the promises of
            48.  Zhang X, Liu Y, Luo C, et al., 2021, Crosslinker-free silk/  bioprinting afloat. Trends Biotechnol, 38(6): 584–593.
               decellularized extracellular matrix porous bioink for 3D   https://doi.org/10.1016/j.tibtech.2019.12.020
               bioprinting-based cartilage  tissue  engineering.  Mater Sci
               Eng C, 118: 111388.                             60.  Yeo M, Ha J, Lee H, et al., 2016, Fabrication of hASCs-laden
                                                                  structures using extrusion-based cell printing supplemented
               https://doi.org/10.1016/j.msec.2020.111388         with an electric field. Acta Biomater, 38: 33–43.
            49.  He Y, Gu Z, Xie M, et al., 2020, Why choose 3D bioprinting?   https://doi.org/10.1016/j.actbio.2016.04.017
               Part II: Methods and bioprinters. Bio-Des Manuf, 3(1): 1–4.
                                                               61.  Gudapati H, Dey M, Ozbolat I, 2016, A comprehensive
               https://doi.org/10.1007/s42242-020-00064-w         review on droplet-based bioprinting: Past, present and
            50.  Chen  J, Zhou  D, Nie  Z,  et al.,  2022, A  scalable  coaxial   future. Biomaterials, 102: 20–42.
               bioprinting technology for mesenchymal stem cell   https://doi.org/10.1016/j.biomaterials.2016.06.012
               microfiber fabrication and high extracellular vesicle yield.
               Biofabrication, 14(1): 015012.                  62.  Saunders RE, Derby B, 2014, Inkjet printing biomaterials for
                                                                  tissue engineering: Bioprinting. Int Mater Rev, 59(8): 430–448.
               https://doi.org/10.1088/1758-5090/ac3b90

            Volume 9 Issue 6 (2023)                         92                         https://doi.org/10.36922/ijb.0112
   95   96   97   98   99   100   101   102   103   104   105