Page 262 - IJB-9-6
P. 262

International Journal of Bioprinting                           3D-Printed GelMA biomaterials in cartilage repair




               recent applications in load-bearing tissue. Polymers(Basel),    28.  Li X, Chen S, Li J, et al., 2016, 3D culture of chondrocytes in
               10(11): 1290.                                      gelatin hydrogels with different stiffness. Polymers (Basel),
                                                                  8(8): 269.
            15.  Schuurman W, Levett PA, Pot MW,  et al., 2013, Gelatin-
               methacrylamide hydrogels as potential biomaterials for   29.  Li X, Chen Y, Kawazoe N,  et al., 2017, Influence of
               fabrication of tissue-engineered cartilage constructs.   microporous gelatin hydrogels on chondrocyte functions.
               Macromol Biosci, 13(5): 551–561.                   J Mater Chem B, 5(29): 5753–5762.
            16.  Gan D, Xu T, Xing W,  et al., 2019, Mussel-inspired   30.  Costantini M, Idaszek J, Szöke K, et al., 2016, 3D bioprinting
               dopamine oligomer intercalated tough and resilient gelatin   of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro
               methacryloyl (GelMA) hydrogels for cartilage regeneration.   neocartilage formation. Biofabrication, 8(3): 035002.
               J Mater Chem B, 7(10): 1716–1725.
                                                               31.  Shopperly LK, Spinnen J, Krüger JP, et al., 2022, Blends of
            17.  Lim KS, Abinzano F, Bernal PN,  et al., 2020, One-step   gelatin and hyaluronic acid stratified by stereolithographic
               photoactivation of a dual-functionalized bioink as cell   bioprinting approximate cartilaginous matrix gradients.
               carrier and cartilage-binding glue for chondral regeneration.   J Biomed Mater Res B Appl Biomater, 110(10): 2310–2322.
               Adv Healthc Mater, 9(15): e1901792.
                                                               32.  Huang K, Li Q, Li Y, et al., 2018, Cartilage tissue regeneration:
            18.  Wang M, Zhao J, Luo Y, et al., 2022, 3D contour printing   The roles of cells, stimulating factors and scaffolds.
               of anatomically mimetic cartilage grafts with microfiber-  Curr Stem Cell Res Ther, 13(7): 547–567.
               reinforced double-network bioink. Macromol Biosci, 22(9):   33.  Chen L, Liu J, Guan M, et al., 2020, Growth factor and its
               e2200179.
                                                                  polymer scaffold-based delivery system for cartilage tissue
            19.  Guan J, Yuan FZ, Mao ZM,  et al., 2021, Fabrication   engineering. Int J Nanomed, 15: 6097–6111.
               of 3D-printed interpenetrating hydrogel scaffolds for   34.  Wang B, Díaz-Payno PJ, Browe DC, et al., 2021, Affinity-
               promoting chondrogenic differentiation.  Polymers (Basel),   bound  growth  factor  within  sulfated  interpenetrating
               13(13):2146.
                                                                  network bioinks for bioprinting cartilaginous tissues. Acta
            20.  Han L , Xu J , Lu X, et al., 2017, Biohybrid methacrylated   Biomater, 128: 130–142.
               gelatin/polyacrylamide hydrogels  for  cartilage  repair.
               J Mater Chem B, 5(4): 731–741.                  35.  Cho H, Kim J, Kim S, et al., 2020, Dual delivery of stem cells
                                                                  and insulin-like growth factor-1 in coacervate-embedded
            21.  Trengove A, Duchi S, Onofrillo C,  et al., 2021, Microbial   composite hydrogels for enhanced cartilage regeneration in
               transglutaminase improves ex vivo adhesion of gelatin   osteochondral defects. J Control Release, 327: 284–295.
               methacryloyl  hydrogels  to  human  cartilage.  Front Med   36.  Zhang Z, Li L, Yang W, et al., 2017, The effects of different
               Technol, 3: 773673.
                                                                  doses of IGF-1 on cartilage and subchondral bone during
            22.  Suo H, Xu K, Zheng X, 2015, Using glucosamine to improve   the repair of full-thickness articular cartilage defects in
               the properties of photocrosslinked gelatin scaffolds.   rabbits. Osteoarthr Cartil, 25(2): 309–320.
               J Biomater Appl, 29(7): 977–987.
                                                               37.  Wu H, Shang Y, Sun W, et al., 2023, Seamless and early gap
            23.  Suo H, Li L, Zhang C,  et al., 2020, Glucosamine-grafted   healing of osteochondral defects by autologous mosaicplasty
               methacrylated gelatin hydrogels as potential biomaterials for   combined with bioactive supramolecular nanofiber-enabled
               cartilage repair. J Biomed Mater Res B Appl Biomater, 108(3):   gelatin methacryloyl (BSN-GelMA) hydrogel. Bioact Mater,
               990–999.                                           19: 88–102.
            24.  Zhan X, 2020, Effect of matrix stiffness and adhesion ligand   38.  Zhu W, Cui H, Boualam B,  et al., 2018, 3D bioprinting
               density on chondrogenic differentiation of mesenchymal   mesenchymal stem cell-laden construct with core-
               stem cells. J Biomed Mater Res A, 108(3): 675–683.  shell  nanospheres  for  cartilage  tissue  engineering.
            25.  Brown GCJ, Lim KS, Farrugia BL,  et al., 2017, Covalent   Nanotechnology, 29(18): 185101.
               incorporation of heparin improves chondrogenesis in   39.  Wang B, Díaz-Payno PJ, Browe DC, et al., 2021, Affinity-
               photocurable gelatin-methacryloyl hydrogels.  Macromol   bound  growth  factor  within  sulfated  interpenetrating
               Biosci, 17(12): 1700158.                           network bioinks for bioprinting cartilaginous tissues. Acta
            26.  Wang  KY,  Jin  XY,  Ma  YH,  et  al.,  2021,  Injectable  stress   Biomater, 128: 130–142.
               relaxation gelatin-based hydrogels with positive surface   40.  Yang Z, Cao F, Li H,  et al., 2022, Microenvironmentally
               charge for adsorption of aggrecan and facile cartilage tissue   optimized 3D-printed TGFβ-functionalized scaffolds
               regeneration. J Nanobiotechnol, 19(1): 214.        facilitate endogenous cartilage regeneration in sheep. Acta
            27.  Huang B, Li P, Chen M, et al., 2022, Hydrogel composite   Biomater, 150: 181–198.
               scaffolds achieve recruitment and chondrogenesis in   41.  Ding X, Gao J, Yu X, et al., 2022, 3D-printed porous scaffolds
               cartilage tissue engineering applications. J Nanobiotechnol,   of hydrogels modified with TGF-β1 binding peptides to
               20(1): 25.                                         promote in vivo cartilage regeneration and animal gait


            Volume 9 Issue 6 (2023)                        254                         https://doi.org/10.36922/ijb.0116
   257   258   259   260   261   262   263   264   265   266   267