Page 262 - IJB-9-6
P. 262
International Journal of Bioprinting 3D-Printed GelMA biomaterials in cartilage repair
recent applications in load-bearing tissue. Polymers(Basel), 28. Li X, Chen S, Li J, et al., 2016, 3D culture of chondrocytes in
10(11): 1290. gelatin hydrogels with different stiffness. Polymers (Basel),
8(8): 269.
15. Schuurman W, Levett PA, Pot MW, et al., 2013, Gelatin-
methacrylamide hydrogels as potential biomaterials for 29. Li X, Chen Y, Kawazoe N, et al., 2017, Influence of
fabrication of tissue-engineered cartilage constructs. microporous gelatin hydrogels on chondrocyte functions.
Macromol Biosci, 13(5): 551–561. J Mater Chem B, 5(29): 5753–5762.
16. Gan D, Xu T, Xing W, et al., 2019, Mussel-inspired 30. Costantini M, Idaszek J, Szöke K, et al., 2016, 3D bioprinting
dopamine oligomer intercalated tough and resilient gelatin of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro
methacryloyl (GelMA) hydrogels for cartilage regeneration. neocartilage formation. Biofabrication, 8(3): 035002.
J Mater Chem B, 7(10): 1716–1725.
31. Shopperly LK, Spinnen J, Krüger JP, et al., 2022, Blends of
17. Lim KS, Abinzano F, Bernal PN, et al., 2020, One-step gelatin and hyaluronic acid stratified by stereolithographic
photoactivation of a dual-functionalized bioink as cell bioprinting approximate cartilaginous matrix gradients.
carrier and cartilage-binding glue for chondral regeneration. J Biomed Mater Res B Appl Biomater, 110(10): 2310–2322.
Adv Healthc Mater, 9(15): e1901792.
32. Huang K, Li Q, Li Y, et al., 2018, Cartilage tissue regeneration:
18. Wang M, Zhao J, Luo Y, et al., 2022, 3D contour printing The roles of cells, stimulating factors and scaffolds.
of anatomically mimetic cartilage grafts with microfiber- Curr Stem Cell Res Ther, 13(7): 547–567.
reinforced double-network bioink. Macromol Biosci, 22(9): 33. Chen L, Liu J, Guan M, et al., 2020, Growth factor and its
e2200179.
polymer scaffold-based delivery system for cartilage tissue
19. Guan J, Yuan FZ, Mao ZM, et al., 2021, Fabrication engineering. Int J Nanomed, 15: 6097–6111.
of 3D-printed interpenetrating hydrogel scaffolds for 34. Wang B, Díaz-Payno PJ, Browe DC, et al., 2021, Affinity-
promoting chondrogenic differentiation. Polymers (Basel), bound growth factor within sulfated interpenetrating
13(13):2146.
network bioinks for bioprinting cartilaginous tissues. Acta
20. Han L , Xu J , Lu X, et al., 2017, Biohybrid methacrylated Biomater, 128: 130–142.
gelatin/polyacrylamide hydrogels for cartilage repair.
J Mater Chem B, 5(4): 731–741. 35. Cho H, Kim J, Kim S, et al., 2020, Dual delivery of stem cells
and insulin-like growth factor-1 in coacervate-embedded
21. Trengove A, Duchi S, Onofrillo C, et al., 2021, Microbial composite hydrogels for enhanced cartilage regeneration in
transglutaminase improves ex vivo adhesion of gelatin osteochondral defects. J Control Release, 327: 284–295.
methacryloyl hydrogels to human cartilage. Front Med 36. Zhang Z, Li L, Yang W, et al., 2017, The effects of different
Technol, 3: 773673.
doses of IGF-1 on cartilage and subchondral bone during
22. Suo H, Xu K, Zheng X, 2015, Using glucosamine to improve the repair of full-thickness articular cartilage defects in
the properties of photocrosslinked gelatin scaffolds. rabbits. Osteoarthr Cartil, 25(2): 309–320.
J Biomater Appl, 29(7): 977–987.
37. Wu H, Shang Y, Sun W, et al., 2023, Seamless and early gap
23. Suo H, Li L, Zhang C, et al., 2020, Glucosamine-grafted healing of osteochondral defects by autologous mosaicplasty
methacrylated gelatin hydrogels as potential biomaterials for combined with bioactive supramolecular nanofiber-enabled
cartilage repair. J Biomed Mater Res B Appl Biomater, 108(3): gelatin methacryloyl (BSN-GelMA) hydrogel. Bioact Mater,
990–999. 19: 88–102.
24. Zhan X, 2020, Effect of matrix stiffness and adhesion ligand 38. Zhu W, Cui H, Boualam B, et al., 2018, 3D bioprinting
density on chondrogenic differentiation of mesenchymal mesenchymal stem cell-laden construct with core-
stem cells. J Biomed Mater Res A, 108(3): 675–683. shell nanospheres for cartilage tissue engineering.
25. Brown GCJ, Lim KS, Farrugia BL, et al., 2017, Covalent Nanotechnology, 29(18): 185101.
incorporation of heparin improves chondrogenesis in 39. Wang B, Díaz-Payno PJ, Browe DC, et al., 2021, Affinity-
photocurable gelatin-methacryloyl hydrogels. Macromol bound growth factor within sulfated interpenetrating
Biosci, 17(12): 1700158. network bioinks for bioprinting cartilaginous tissues. Acta
26. Wang KY, Jin XY, Ma YH, et al., 2021, Injectable stress Biomater, 128: 130–142.
relaxation gelatin-based hydrogels with positive surface 40. Yang Z, Cao F, Li H, et al., 2022, Microenvironmentally
charge for adsorption of aggrecan and facile cartilage tissue optimized 3D-printed TGFβ-functionalized scaffolds
regeneration. J Nanobiotechnol, 19(1): 214. facilitate endogenous cartilage regeneration in sheep. Acta
27. Huang B, Li P, Chen M, et al., 2022, Hydrogel composite Biomater, 150: 181–198.
scaffolds achieve recruitment and chondrogenesis in 41. Ding X, Gao J, Yu X, et al., 2022, 3D-printed porous scaffolds
cartilage tissue engineering applications. J Nanobiotechnol, of hydrogels modified with TGF-β1 binding peptides to
20(1): 25. promote in vivo cartilage regeneration and animal gait
Volume 9 Issue 6 (2023) 254 https://doi.org/10.36922/ijb.0116

