Page 263 - IJB-9-6
P. 263

International Journal of Bioprinting                           3D-Printed GelMA biomaterials in cartilage repair




               restoration. ACS Appl Mater Interfaces, 14(14): 15982–15995.  56.  Jiang  Y,  Tuan  RS,  2015,  Origin  and  function  of  cartilage
                                                                  stem/progenitor cells in osteoarthritis. Nat Rev Rheumatol,
            42.  van Beuningen HM, Glansbeek HL, van der Kraan PM, et   11(4): 206–212.
               al.,  2000,  Osteoarthritis-like  changes  in  the  murine  knee
               joint resulting from intra-articular transforming growth   57.  Kozhemyakina E, Zhang M, Ionescu A,  et al., 2015,
               factor-beta injections. Osteoarthr Cartil, 8(1): 25–33.  Identification of a Prg4-expressing articular cartilage
                                                                  progenitor cell population in mice.  Arthritis Rheumatol,
            43.  Bakker  AC,  van  de  Loo  FA,  van  Beuningen  HM,  et  al.,   67(5): 1261–1273.
               2001, Overexpression of active TGF-beta-1 in the murine
               knee joint: evidence for synovial-layer-dependent chondro-  58.  Levato R, Webb WR, Otto IA, et al., 2017, The bio in the
               osteophyte formation. Osteoarthr Cartil, 9(2): 128–136.  ink: Cartilage regeneration with bioprintable hydrogels and
                                                                  articular cartilage-derived progenitor cells. Acta Biomater,
            44.  Gong L, Li J, Zhang J, et al., 2020, An interleukin-4-loaded   61: 41–53.
               bi-layer 3D printed scaffold promotes osteochondral
               regeneration. Acta Biomater, 117(Nov): 246–260.  59.  Mouser VHM, Levato R, Mensinga A, et al., 2020, Bio-ink
                                                                  development for three-dimensional bioprinting of hetero-
            45.  Liang Y, Li J, Wang Y, et al., Platelet Rich Plasma in the Repair   cellular cartilage constructs. Connect Tissue Res, 61(2): 137–
               of Articular Cartilage Injury: A Narrative Review. Cartilage,   151.
               2022. 13(3): p. 19476035221118419.
                                                               60.  Gao G, Schilling AF, Hubbell K,  et  al., 2015, Improved
            46.  Everts P, Onishi K, Jayaram P,  et al., 2020, Platelet-rich   properties of bone and cartilage tissue from 3D inkjet-
               plasma: new performance understandings and therapeutic   bioprinted human mesenchymal stem cells by simultaneous
               considerations in 2020. Int J Mol Sci, 21(20): 7749.  deposition and photocrosslinking in PEG-GelMA.
            47.  Szwedowski D, Szczepanek J, Paczesny Ł,  et al., 2021,   Biotechnol Lett, 37(11): 2349–2355.
               The effect  of platelet-rich plasma on the intra-articular   61.  Luo C, Xie R, Zhang J, et al., 2020, Low-temperature three-
               microenvironment  in  knee  osteoarthritis.  Int J Mol Sci,   dimensional printing of tissue cartilage engineered with
               22(11): 5492.                                      gelatin methacrylamide.  Tissue Eng Part C Methods, 26(6):
            48.  Qian Y, Han Q, Chen W, et al., 2017, Platelet-rich plasma   306–316.
               derived growth factors contribute to stem cell differentiation   62.  Shah SS, Mithoefer K, 2021, Scientific developments and
               in musculoskeletal regeneration. Front Chem, 5: 89.  clinical applications utilizing chondrons and chondrocytes
            49.  Jiang G, Li S, Yu K, et al., 2021, A 3D-printed PRP-GelMA   with matrix for cartilage repair.  Cartilage, 13(1_suppl):
               hydrogel promotes osteochondral regeneration through M2   1195s–1205s.
               macrophage polarization in a rabbit model. Acta Biomater,   63.  Levett PA, Melchels FP, Schrobback K,  et al., 2014,
               128: 150–162.                                      Chondrocyte   redifferentiation  and  construct
            50.  Irmak G, Gümüşderelioğlu M, 2020, Photo-activated   mechanical property development in single-component
               platelet-rich plasma (PRP)-based patient-specific bio-  photocrosslinkable hydrogels. J Biomed Mater Res Part A,
               ink for cartilage tissue engineering.  Biomed Mater, 15(6):    102(8): 2544–2553.
               065010.                                         64.  Hölzl  K, Fürsatz M,  Göcerler  H,  et al., 2022,  Gelatin
            51.  Irmak G, Gümüşderelioğlu M, 2021, Patients- and   methacryloyl  as  environment  for  chondrocytes  and  cell
               tissue-specific bio-inks with photoactivated PRP and   delivery to superficial cartilage defects. J Tissue Eng Regen
               methacrylated gelatin for the fabrication of osteochondral   Med, 16(2): 207–222.
               constructs.  Mater Sci Eng C Mater Biol Appl, 125:    65.  Wang G, An Y, Zhang X,  et al., 2021, Chondrocyte
               112092.
                                                                  spheroids laden in GelMA/HAMA hybrid hydrogel for
            52.  Zheng K, Zheng X, Yu M,  et al., 2023, BMSCs-seeded   tissue-engineered cartilage with enhanced proliferation,
               interpenetrating network GelMA/SF composite hydrogel for   better phenotype maintenance, and natural morphological
               articular cartilage repair. J Funct Biomater, 14(1).  structure. Gels, 7(4): 247.
            53.  Ma Q, Liao J, Cai X, 2018, Different sources of stem cells and   66.  Levett PA, Melchels FP, Schrobback K,  et al., 2014, A
               their application in cartilage tissue engineering. Curr Stem   biomimetic  extracellular  matrix  for  cartilage  tissue
               Cell Res Ther, 13(7): 568–575.                     engineering  centered  on  photocurable  gelatin,  hyaluronic
                                                                  acid and chondroitin sulfate. Acta Biomater, 10(1): 214–223.
            54.  Pirosa A, Gottardi R, Alexander PG,  et al., 2021, An
               in vitro chondro-osteo-vascular triphasic model of the   67.  Agten H, Van Hoven I, Viseu SR,  et al., 2022, In vitro
               osteochondral complex. Biomaterials, 272: 120773.  and in vivo evaluation of 3D constructs engineered with
            55.  Liu F, Wang X, Li Y, et al., 2022, Dendrimer-modified gelatin   human iPSC-derived chondrocytes in gelatin methacryloyl
               methacrylate hydrogels carrying adipose-derived stromal/  hydrogel. Biotechnol Bioeng, 119(10): 2950–2963.
               stem cells promote cartilage regeneration. Stem Cell Res Ther,   68.  Tang P, Song P, Peng Z,  et  al., 2021, Chondrocyte-laden
               13(1): 26.                                         GelMA hydrogel combined with 3D printed PLA scaffolds


            Volume 9 Issue 6 (2023)                        255                         https://doi.org/10.36922/ijb.0116
   258   259   260   261   262   263   264   265   266   267   268