Page 263 - IJB-9-6
P. 263
International Journal of Bioprinting 3D-Printed GelMA biomaterials in cartilage repair
restoration. ACS Appl Mater Interfaces, 14(14): 15982–15995. 56. Jiang Y, Tuan RS, 2015, Origin and function of cartilage
stem/progenitor cells in osteoarthritis. Nat Rev Rheumatol,
42. van Beuningen HM, Glansbeek HL, van der Kraan PM, et 11(4): 206–212.
al., 2000, Osteoarthritis-like changes in the murine knee
joint resulting from intra-articular transforming growth 57. Kozhemyakina E, Zhang M, Ionescu A, et al., 2015,
factor-beta injections. Osteoarthr Cartil, 8(1): 25–33. Identification of a Prg4-expressing articular cartilage
progenitor cell population in mice. Arthritis Rheumatol,
43. Bakker AC, van de Loo FA, van Beuningen HM, et al., 67(5): 1261–1273.
2001, Overexpression of active TGF-beta-1 in the murine
knee joint: evidence for synovial-layer-dependent chondro- 58. Levato R, Webb WR, Otto IA, et al., 2017, The bio in the
osteophyte formation. Osteoarthr Cartil, 9(2): 128–136. ink: Cartilage regeneration with bioprintable hydrogels and
articular cartilage-derived progenitor cells. Acta Biomater,
44. Gong L, Li J, Zhang J, et al., 2020, An interleukin-4-loaded 61: 41–53.
bi-layer 3D printed scaffold promotes osteochondral
regeneration. Acta Biomater, 117(Nov): 246–260. 59. Mouser VHM, Levato R, Mensinga A, et al., 2020, Bio-ink
development for three-dimensional bioprinting of hetero-
45. Liang Y, Li J, Wang Y, et al., Platelet Rich Plasma in the Repair cellular cartilage constructs. Connect Tissue Res, 61(2): 137–
of Articular Cartilage Injury: A Narrative Review. Cartilage, 151.
2022. 13(3): p. 19476035221118419.
60. Gao G, Schilling AF, Hubbell K, et al., 2015, Improved
46. Everts P, Onishi K, Jayaram P, et al., 2020, Platelet-rich properties of bone and cartilage tissue from 3D inkjet-
plasma: new performance understandings and therapeutic bioprinted human mesenchymal stem cells by simultaneous
considerations in 2020. Int J Mol Sci, 21(20): 7749. deposition and photocrosslinking in PEG-GelMA.
47. Szwedowski D, Szczepanek J, Paczesny Ł, et al., 2021, Biotechnol Lett, 37(11): 2349–2355.
The effect of platelet-rich plasma on the intra-articular 61. Luo C, Xie R, Zhang J, et al., 2020, Low-temperature three-
microenvironment in knee osteoarthritis. Int J Mol Sci, dimensional printing of tissue cartilage engineered with
22(11): 5492. gelatin methacrylamide. Tissue Eng Part C Methods, 26(6):
48. Qian Y, Han Q, Chen W, et al., 2017, Platelet-rich plasma 306–316.
derived growth factors contribute to stem cell differentiation 62. Shah SS, Mithoefer K, 2021, Scientific developments and
in musculoskeletal regeneration. Front Chem, 5: 89. clinical applications utilizing chondrons and chondrocytes
49. Jiang G, Li S, Yu K, et al., 2021, A 3D-printed PRP-GelMA with matrix for cartilage repair. Cartilage, 13(1_suppl):
hydrogel promotes osteochondral regeneration through M2 1195s–1205s.
macrophage polarization in a rabbit model. Acta Biomater, 63. Levett PA, Melchels FP, Schrobback K, et al., 2014,
128: 150–162. Chondrocyte redifferentiation and construct
50. Irmak G, Gümüşderelioğlu M, 2020, Photo-activated mechanical property development in single-component
platelet-rich plasma (PRP)-based patient-specific bio- photocrosslinkable hydrogels. J Biomed Mater Res Part A,
ink for cartilage tissue engineering. Biomed Mater, 15(6): 102(8): 2544–2553.
065010. 64. Hölzl K, Fürsatz M, Göcerler H, et al., 2022, Gelatin
51. Irmak G, Gümüşderelioğlu M, 2021, Patients- and methacryloyl as environment for chondrocytes and cell
tissue-specific bio-inks with photoactivated PRP and delivery to superficial cartilage defects. J Tissue Eng Regen
methacrylated gelatin for the fabrication of osteochondral Med, 16(2): 207–222.
constructs. Mater Sci Eng C Mater Biol Appl, 125: 65. Wang G, An Y, Zhang X, et al., 2021, Chondrocyte
112092.
spheroids laden in GelMA/HAMA hybrid hydrogel for
52. Zheng K, Zheng X, Yu M, et al., 2023, BMSCs-seeded tissue-engineered cartilage with enhanced proliferation,
interpenetrating network GelMA/SF composite hydrogel for better phenotype maintenance, and natural morphological
articular cartilage repair. J Funct Biomater, 14(1). structure. Gels, 7(4): 247.
53. Ma Q, Liao J, Cai X, 2018, Different sources of stem cells and 66. Levett PA, Melchels FP, Schrobback K, et al., 2014, A
their application in cartilage tissue engineering. Curr Stem biomimetic extracellular matrix for cartilage tissue
Cell Res Ther, 13(7): 568–575. engineering centered on photocurable gelatin, hyaluronic
acid and chondroitin sulfate. Acta Biomater, 10(1): 214–223.
54. Pirosa A, Gottardi R, Alexander PG, et al., 2021, An
in vitro chondro-osteo-vascular triphasic model of the 67. Agten H, Van Hoven I, Viseu SR, et al., 2022, In vitro
osteochondral complex. Biomaterials, 272: 120773. and in vivo evaluation of 3D constructs engineered with
55. Liu F, Wang X, Li Y, et al., 2022, Dendrimer-modified gelatin human iPSC-derived chondrocytes in gelatin methacryloyl
methacrylate hydrogels carrying adipose-derived stromal/ hydrogel. Biotechnol Bioeng, 119(10): 2950–2963.
stem cells promote cartilage regeneration. Stem Cell Res Ther, 68. Tang P, Song P, Peng Z, et al., 2021, Chondrocyte-laden
13(1): 26. GelMA hydrogel combined with 3D printed PLA scaffolds
Volume 9 Issue 6 (2023) 255 https://doi.org/10.36922/ijb.0116

