Page 105 - v11i4
P. 105

International Journal of Bioprinting                                        Printed organoids for medicine




               h t t ps://d .wa nfa n g d a t a.co m.cn/t h esi s/  208. Kalmykov A, Huang C, Bliley J, et al. Organ-on-e-chip:
               vChhUaGVzaXNOZXdTMjAyNDA5MjAxNTE3MjUS              three-dimensional self-rolled biosensor array for electrical
               CUQwMzAyNDMyOBoIe XRhZ mhk ZXM%3D.Accessed         interrogations of human electrogenic spheroids.  Sci Adv.
               XXX.                                               2019;5(8):eaax0729.
                                                                  doi: 10.1126/sciadv.aax0729
            197. Mai S, Inkielewicz-Stepniak I. Graphene oxide nanoparticles
               and organoids: a prospective advanced model for pancreatic   209. Spedicati M, Tivano F, Zoso A, et al. 3D bioartificial
               cancer research. Int J Mol Sci. 2024;25(2):1066.   stretchable scaffolds mimicking the mechanical hallmarks of
               doi: 10.3390/ijms25021066                          human cardiac fibrotic tissue. Int J Bioprint. 2024;10(3):2247.
                                                                  doi: 10.36922/ijb.2247
            198. Salmon I, Grebenyuk S, Abdel Fattah AR, et al. Engineering
               neurovascular organoids with 3D printed microfluidic   210. Vashistha R, Kumar P, Dangi AK, Sharma N, Chhabra D,
               chips. Lab Chip. 2022;22(8):1615-1629.             Shukla P. Quest for cardiovascular interventions: precise
               doi: 10.1039/d1lc00535a                            modeling and 3D printing of heart valves.  J Biol Eng.
                                                                  2019;13:12.
            199. Park YG, Kim S, Min S, et al. Soft 3D bioelectrodes for      doi: 10.1186/s13036-018-0132-5
               intraorganoid signal monitoring in cardiac models.  Nano
               Lett. 2025;25(16):6481-6490.                    211. Chen A, Su J, Li Y, et al. 3D/4D printed bio-piezoelectric
               doi: 10.1021/acs.nanolett.5c00069                  smart scaffolds for next-generation bone tissue engineering.
                                                                  Int J Extreme Manuf. 2023;5(3):8.
            200. Lee S, Chung WG, Jeong H, et al. Electrophysiological      doi: 10.1088/2631-7990/acd88f
               analysis of retinal organoid development using 3D
               microelectrodes of liquid metals.  Adv  Mater  (Deerfield   212. Simonneau C, Duschmalé M, Gavrilov A, et al. Investigating
               Beach, Fla). 2024;36(35):e2404428.                 receptor-mediated  antibody  transcytosis  using blood-
               doi: 10.1002/adma.202404428                        brain barrier organoid arrays.  Fluids Barriers CNS. 2021;
                                                                  18(1):43.
            201. Dong K, Liu WC, Su Y, et al. Scalable electrophysiology of      doi: 10.1186/s12987-021-00276-x
               millimeter-scale animals with electrode devices. BME Front.
               2023;4:0034.                                    213. Shen C, Zhang ZJ, Li XX, et al. Intersection of nanomaterials
               doi: 10.34133/bmef.0034                            and organoids technology in biomedicine. Front Immunol.
                                                                  2023;14:1172262.
            202. Acha C, George D, Diaz LC, et al. Neuromodulation in      doi: 10.3389/fimmu.2023.1172262
               neural organoids with shell MEAs. bioRxiv. 2025.  214. Paone LS, Benmassaoud MM, Curran A, Vega SL, Galie
               doi: 10.1101/2025.02.18.637712
                                                                  PA. A 3D-printed blood-brain barrier model with tunable
            203. Saleh MS, Ritchie SM, Nicholas MA, et al. CMU array: a 3D   topology and  cell-matrix  interactions.  Biofabrication.
               nanoprinted, fully customizable high-density microelectrode   2023;16(1):260.
               array platform. Sci Adv. 2022;8(40):eabj4853.      doi: 10.1088/1758-5090/ad0260
               doi: 10.1126/sciadv.abj4853                     215. Marino A, Tricinci O, Battaglini M, et al. A 3D real-scale,
            204. Patel D, Shetty S, Acha C, et al. Microinstrumentation   biomimetic, and biohybrid model of the blood-brain
               for brain organoids.  Adv Healthc Mater. 2024;13(21):   barrier fabricated through two-photon lithography.  Small.
               e2302456.                                          2018;14(6):2959.
               doi: 10.1002/adhm.202302456                        doi: 10.1002/smll.201702959
            205. Li TL, Liu Y, Forro C, et al. Stretchable mesh microelectronics   216. Carton F, Malatesta M. In vitro models of biological barriers
               for the biointegration and stimulation of human neural   for nanomedical research. Int J Mol Sci. 2022;23(16):8910.
               organoids. Biomaterials. 2022;290:121825.          doi: 10.3390/ijms23168910
               doi: 10.1016/j.biomaterials.2022.121825         217. Sharma A, Fernandes DC, Reis RL, et al. Cutting-edge
            206. Mao M, Han K, Gao J, et al. Engineering highly aligned   advances in modeling the blood-brain barrier and tools for
               and densely populated cardiac muscle  bundles via  fibrin   its reversible permeabilization for enhanced drug delivery
               remodeling in 3D-printed anisotropic microfibrous lattices.   into the brain. Cell Biosci. 2023;13(1):137.
               Adv Mater (Deerfield Beach, Fla). 2025;37(9):e2419380.     doi: 10.1186/s13578-023-01079-3
               doi: 10.1002/adma.202419380                     218. Reina-Mahecha A, Beers MJ, van der Veen HC, Zuhorn
            207. Zilinskaite N, Shukla RP, Baradoke A. Use of 3D printing   IS, van Kooten TG, Sharma PK. A review of the role of
               techniques to fabricate implantable microelectrodes for   bioreactors for iPSCs-based tissue-engineered articular
               electrochemical detection of biomarkers in the early   cartilage. Tissue Eng Regen Med. 2023;20(7):1041-1052.
               diagnosis of cardiovascular and neurodegenerative diseases.      doi: 10.1007/s13770-023-00573-6
               ACS Meas Sci Au. 2023;3(5):315-336.             219. Xiu Z, Yang Q, Xie F, Han F, He W, Liao W. Revolutionizing
               doi: 10.1021/acsmeasuresciau.3c00028               digestive system tumor organoids research: exploring


            Volume 11 Issue 4 (2025)                        97                            doi: 10.36922/IJB025190184
   100   101   102   103   104   105   106   107   108   109   110