Page 101 - v11i4
P. 101
International Journal of Bioprinting Printed organoids for medicine
105. Augustine R, Kalva SN, Ahmad R, et al. 3D bioprinted 116. Gopal S, Rodrigues AL, Dordick JS. Exploiting CRISPR
cancer models: revolutionizing personalized cancer therapy. Cas9 in three-dimensional stem cell cultures to model
Transl Oncol. 2021;14(4):101015. disease. Front Bioeng Biotechnol. 2020;8:692.
doi: 10.1016/j.tranon.2021.101015 doi: 10.3389/fbioe.2020.00692
106. Qazi TH, Blatchley MR, Davidson MD, et al. Programming 117. Schene IF, Joore IP, Oka R, et al. Prime editing for functional
hydrogels to probe spatiotemporal cell biology. Cell Stem repair in patient-derived disease models. Nat Commun.
Cell. 2022;29(5):678-691. 2020;11(1):5352.
doi: 10.1016/j.stem.2022.03.013 doi: 10.1038/s41467-020-19136-7
107. Gopalakrishnan S, Bakke I, Hansen MD, et al. Comprehensive 118. Inak G, Rybak-Wolf A, Lisowski P, et al. Defective metabolic
protocols for culturing and molecular biological analysis programming impairs early neuronal morphogenesis in
of IBD patient-derived colon epithelial organoids. Front neural cultures and an organoid model of Leigh syndrome.
Immunol. 2023;14:1097383. Nat Commun. 2021;12(1):1929.
doi: 10.3389/fimmu.2023.1097383 doi: 10.1038/s41467-021-22117-z
108. Caire R, Audoux E, Courbon G, et al. YAP/TAZ: key players 119. Zhang W, Ma L, Yang M, et al. Cerebral organoid and
for rheumatoid arthritis severity by driving fibroblast like mouse models reveal a RAB39b-PI3K-mTOR pathway-
synoviocytes phenotype and fibro-inflammatory response. dependent dysregulation of cortical development
Front Immunol. 2021;12:791907. leading to macrocephaly/autism phenotypes. Genes Dev.
doi: 10.3389/fimmu.2021.791907 2020;34(7-8):580-597.
doi: 10.1101/gad.332494.119
109. Günther C, Winner B, Neurath MF, Stappenbeck TS.
Organoids in gastrointestinal diseases: from experimental 120. An HL, Kuo HC, Tang TK. Modeling human primary
models to clinical translation. Gut. 2022;71(9): microcephaly with hiPSC-derived brain organoids carrying
1892-1908. CPAP-E1235V disease-associated mutant protein. Front Cell
doi: 10.1136/gutjnl-2021-326560 Dev Biol. 2022;10:830432.
doi: 10.3389/fcell.2022.830432
110. Sachs N, Tsukamoto Y, Kujala P, Peters PJ, Clevers
H. Intestinal epithelial organoids fuse to form self- 121. Cidonio G, Glinka M, Dawson JI, Oreffo ROC. The cell in
organizing tubes in floating collagen gels. Development. the ink: Improving biofabrication by printing stem cells for
2017;144(6):1107-1112. skeletal regenerative medicine. Biomater. 2019;209:10-24.
doi: 10.1242/dev.143933 https://doi.org/10.1016/j.biomaterials.2019.04.009
111. Niklinska-Schirtz BJ, Venkateswaran S, Anbazhagan M, 122. Ahn CB, Lee J-H, Kim JH, et al. Development of a 3D
et al. Ileal derived organoids from Crohn’s disease patients subcutaneous construct containing insulin-producing
show unique transcriptomic and secretomic signatures. Cell beta cells using bioprinting. Bio-Des Manuf. 2022;5(2):
Mol Gastroenterol Hepatol. 2021;12(4):1267-1280. 265-276.
doi: 10.1016/j.jcmgh.2021.06.018 doi: 10.1007/s42242-021-00178-9
112. Taebnia N, Zhang R, Kromann EB, Dolatshahi-Pirouz 123. Enrico A, Voulgaris D, Ostmans R, et al. 3D microvascularized
A, Andresen TL, Larsen NB. Dual-material 3D-printed tissue models by laser-based cavitation molding of collagen.
intestinal model devices with integrated villi-like Adv Mater (Deerfield Beach, Fla). 2022;34(11):e2109823.
scaffolds. ACS Appl Mater Interfaces. 2021;13(49): doi: 10.1002/adma.202109823
8434-58446. 124. Bai L, Zhou D, Li G, Liu J, Chen X, Su J. Engineering bone/
doi: 10.1021/acsami.1c22185 cartilage organoids: strategy, progress, and application. Bone
113. Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP. Res. 2024;12(1):66.
Recapitulating macro-scale tissue self-organization through doi: 10.1038/s41413-024-00376-y
organoid bioprinting. Nat Mater. 2021;20(1):22-29. 125. O’Connor C, Brady E, Zheng Y, Moore E, Stevens KR.
doi: 10.1038/s41563-020-00803-5 Engineering the multiscale complexity of vascular networks.
114. Carvalho MR, Yan L-P, Li B, et al. Gastrointestinal organs Nat Rev Mater. 2022;7(9):702-716.
and organoids-on-a-chip: advances and translation into the doi: 10.1038/s41578-022-00447-8
clinics. Review. Biofabrication. 2023;15(4):042004. 126. Michael S, Sorg H, Peck CT, et al. Tissue engineered skin
doi: 10.1088/1758-5090/acf8fb substitutes created by laser-assisted bioprinting form skin-
like structures in the dorsal skin fold chamber in mice. PLoS
115. Xiaoshuai L, Qiushi W, Rui W. Advantages of CRISPR-
Cas9 combined organoid model in the study of congenital One. 2013;8(3):e57741.
nervous system malformations. Front Bioeng Biotechnol. doi: 10.1371/journal.pone.0057741
2022;10:932936. 127. Rioux G, Simard M, Morin S, Lorthois I, Guérin SL, Pouliot
doi: 10.3389/fbioe.2022.932936 R. Development of a 3D psoriatic skin model optimized
Volume 11 Issue 4 (2025) 93 doi: 10.36922/IJB025190184