Page 97 - v11i4
P. 97

International Journal of Bioprinting                                        Printed organoids for medicine




               tumor microenvironment features, and drug responses.   3D printing in bone regeneration.  J Mater Sci Technol.
               Small. 2025;21(8):e2409321.                        2024;188:84-97.
               doi: 10.1002/smll.202409321                        doi:  10.1016/j.jmst.2024.01.001
            9.   Ding Z, Huang J, Ren Y, et al. 3D bioprinted advanced   21.  Wang J, Zhou D, Li R, et al. Protocol for engineering bone
               cartilage organoids with engineered magnetic nanoparticles   organoids from mesenchymal stem cells.  Bioact Mater.
               polarized-BMSCs/alginate/gelatin for cartilage tissue   2025;45:388-400.
               regeneration. Article. Nano Res. 2025;18(2)94907084.     doi: 10.1016/j.bioactmat.2024.11.017
               doi: 10.26599/nr.2025.94907084
                                                               22.  Li H, Chen H, Du C, et al. Effect of hydroxyapatite nanowires
            10.  Shyu J-F, Chu T-H, Lo Y-C, et al. Fabrication of 3D   on formation and bioactivity of osteoblastic cell spheroid.
               bioprinting vascularized bone organoid under compressive   ACS Biomater Sci Eng. 2024;10(12):7413-7428.
               stimulation for study of osteogenesis and angiogenesis.      doi: 10.1021/acsbiomaterials.4c01159
               Meeting Abstract. J Bone Miner Res. 2023;38:304-304.
                                                               23.  Fang Y, Ji M, Wu B, et al. Engineering highly
            11.  Abaci A, Camci-Unal G, Guvendiren M. Three-dimensional   vascularized bone tissues by 3d bioprinting of granular
               bioprinting for medical applications. Article. MRS Bulletin.   prevascularized  spheroids.  ACS Appl Mater Interfaces.
               2023;48(6):624-631.                                2023;15(37):43492-43502.
               doi: 10.1557/s43577-023-00546-z                    doi: 10.1021/acsami.3c08550
            12.  Shen N, Li Z, Yang P, et al. Designing methacrylic anhydride-  24.  Loukelis K, Koutsomarkos N, Mikos AG, Chatzinikolaidou
               based hydrogels for 3D bioprinting. IJB. 2024;11(1):84-138.  M. Advances in 3D bioprinting for regenerative medicine
               doi: 10.36922/ijb.4650                             applications. Regen Biomater. 2024;11:rbae033.
                                                                  doi: 10.1093/rb/rbae033
            13.  Chen Z, Zhang H, Huang J, et al. DNA-encoded dynamic
               hydrogels  for  3D  bioprinted  cartilage  organoids.  Mater   25.  Bernal PN, Bouwmeester M, Madrid-Wolff J, et al.
               Today Bio. 2025;31:101509.                         Volumetric bioprinting of organoids and optically tuned
               doi: 10.1016/j.mtbio.2025.101509                   hydrogels to build liver-like metabolic biofactories.  Adv
                                                                  Mater (Deerfield Beach, Fla). 2022;34(15):e2110054.
            14.  Shen C, Wang J, Li G, et al. Boosting cartilage repair with silk
               fibroin-DNA hydrogel-based cartilage organoid precursor.      doi: 10.1002/adma.202110054
               Article. Bioact Mater. 2024;35:429-444.         26.  Luo Y, Xu R, Hu Z, et al. Gel-based suspension medium used
               doi: 10.1016/j.bioactmat.2024.02.016               in 3D bioprinting  for constructing tissue/organ analogs.
                                                                  Gels. 2024;10(10):644.
            15.  Ali EAM, Smaida R, Meyer M, et al. iPSCs chondrogenic
               differentiation  for  personalized  regenerative  medicine:  a      doi: 10.3390/gels10100644
               literature review. Stem Cell Res Ther. 2024;15(1):185.  27.  De Leeuw A, Graf R, Zhang J, et al. Increased cell density
               doi: 10.1186/s13287-024-03794-1                    increases mineral formation rates and stiffness in 3D bioprinted
                                                                  patient-derived bone organoids using dynamic loading.
            16.  Lawlor KT, Vanslambrouck JM, Higgins JW, et al.
               Cellular  extrusion  bioprinting  improves  kidney  Meeting Abstract. Tissue Eng Part A. 2023;29(11-12):582-583.
               organoid  reproducibility and conformation.  Nat Mater.   28.  Wang J, Chen X, Li R, et al. Standardization and consensus
               2021;20(2):260-271.                                in the development and application of bone organoids.
               doi: 10.1038/s41563-020-00853-9                    Theranostics. 2025;15(2):682-706.
                                                                  doi: 10.7150/thno.105840
            17.  Long B, Mengmeng L, Jiacan S. A perspective on light-
               based bioprinting of DNA hydrogels for advanced bone   29.  Park S, Cho SW. Bioengineering toolkits for potentiating
               regeneration: implication for bone organoids. Int J Bioprint.   organoid therapeutics. Adv Drug Deliv Rev. 2024;208:115238.
               2023;9(2):688.                                     doi: 10.1016/j.addr.2024.115238
               doi: 10.18063/ijb.688
                                                               30.  Frenz-Wiessner S, Fairley SD, Buser M, et al. Generation
            18.  Wang Z, Wang X, Huang Y, et al. Ca 3.3-mediated   of complex bone marrow organoids from human induced
                                                v
               endochondral ossification in a three-dimensional bioprinted   pluripotent stem cells. Article. Nat Methods. 2024;21(5).
               GelMA hydrogel. Article. Bio-Des Manuf. 2024;7(6):983-999.     doi: 10.1038/s41592-024-02172-2
               doi: 10.1007/s42242-024-00287-1
                                                               31.  De Leeuw A, Schadli GN, Steffi C, et al. A novel
            19.  Wang J. Engineering large-scale self‐mineralizing bone   3D-bioprinted patient-specific biomimetic bone organoid
               organoids with bone matrix‐inspired hydroxyapatite hybrid   to model osteogenesis imperfecta. Meeting Abstract. Tissue
               bioinks. Adv Mater (Weinheim). 2024;36(30):e2309875.  Eng Part A. 2023;29(13-14):582-583.
               doi: 10.1002/adma.202309875
                                                               32.  Abbott A. Cell culture: biology’s new dimension.  Nature.
            20.  Ren  X,  Wang  J,  Wu  Y,  et  al. One-pot  synthesis  of   2003;424(6951):870-872.
               hydroxyapatite hybrid bioinks for  digital  light  processing      doi: 10.1038/424870a


            Volume 11 Issue 4 (2025)                        89                            doi: 10.36922/IJB025190184
   92   93   94   95   96   97   98   99   100   101   102