Page 98 - v11i4
P. 98
International Journal of Bioprinting Printed organoids for medicine
33. Li J, Han S, Yu F, Li T, Liao B, Liu F. Mapping the landscape 45. Fareez UNM, Naqvi SAA, Mahmud M, Temirel M.
of PSC-CM research through bibliometric analysis. Front Computational fluid dynamics (CFD) analysis of
Cardiovasc Med. 2024;11:1435874. bioprinting. Adv Healthc Mater. 2024;13(20):e2400643.
doi: 10.3389/fcvm.2024.1435874 doi: 10.1002/adhm.202400643
34. Wang Y, Hou Y, Hao T, et al. Model construction and clinical 46. Abolhassani S, Fattahi R, Safshekan F, Saremi J, Hasanzadeh
therapeutic potential of engineered cardiac organoids for E. Advances in 4D bioprinting: the next frontier in
cardiovascular diseases. Biomater Transl. 2024;5(4):337-354. regenerative medicine and tissue engineering applications.
doi: 10.12336/biomatertransl.2024.04.002 Adv Healthc Mater. 2025;14(4):e2403065.
doi: 10.1002/adhm.202403065
35. Nwokoye PN, Abilez OJ. Blood vessels in a dish: the
evolution, challenges, and potential of vascularized tissues 47. Wu J, Fu J. Toward developing human organs via embryo
and organoids. Front Cardiovasc Med. 2024;11:1336910. models and chimeras. Cell. 2024;187(13):3194-3219.
doi: 10.3389/fcvm.2024.1336910 doi: 10.1016/j.cell.2024.05.027
36. Khoury RE, Nagiah N, Mudloff JA, Thakur V, Chattopadhyay 48. Wu Y, Qin M, Yang X. Organ bioprinting: progress, challenges
M, Joddar B. 3D bioprinted spheroidal droplets for engineering and outlook. J Mater Chem B. 2023;11(43):10263-10287.
the heterocellular coupling between cardiomyocytes and doi: 10.1039/d3tb01630g
cardiac fibroblasts. Cyborg Bionic Syst. 2021;2021:9864212. 49. Roza Vaez G, Ileana LC, Matthew CM, Vikramaditya GY.
doi: 10.34133/2021/9864212 Brain organoids: a new, transformative investigational tool
37. Mohr E, Thum T, Bär C. Accelerating cardiovascular for neuroscience research. Adv Biosyst. 2018;3(1):174.
research: recent advances in translational 2D and 3D heart doi: 10.1002/adbi.201800174
models. Eur J Heart Fail. Oct 2022;24(10):1778-1791. 50. Renjitha G, Rakhi P. Bioengineering of brain organoids:
doi: 10.1002/ejhf.2631 advancements and challenges. Tissue Eng. 2022:399-414.
38. Zhang W, Chen Y, Li M, et al. A PDA-functionalized 3d doi: 10.1016/b978-0-12-824064-9.00002-2
lung scaffold bioplatform to construct complicated breast 51. Madeline AL, Magdalena R, Carol-Anne M, et al.
tumor microenvironment for anticancer drug screening and Cerebral organoids model human brain development and
immunotherapy. Adv Sci (Weinh). 2023;10(26):e2302855. microcephaly. Nature. 2013;501(7467):373-379.
doi: 10.1002/advs.202302855 doi: 10.1038/nature12517
39. Li S, Li J, Xu J, et al. Removal-free and multicellular 52. Jeong E, Choi S, Cho SW. Recent advances in brain organoid
suspension bath-based 3D bioprinting. Adv Mater (Deerfield technology for human brain research. ACS Appl Mater
Beach, Fla). 2024;36(48):e2406891. Interfaces. 2023;15(1):200-219.
doi: 10.1002/adma.202406891 doi: 10.1021/acsami.2c17467
40. Hoang P, Sun S, Tarris BA, Ma Z. Controlling morphology 53. Cadena MA, Sing A, Taylor K, et al. A 3D bioprinted cortical
and functions of cardiac organoids by two-dimensional organoid platform for modeling human brain development.
geometrical templates. Cells Tissues Organs. 2023;212(1):64-73. Adv Healthc Mater. 2024;13(27):e2401603.
doi: 10.1159/000521787 doi: 10.1002/adhm.202401603
41. Noël ES. Cardiac construction—recent advances in 54. Jihoon K, Sujin H, Sunghun C, Yoojin C, Noo Li J. Revealing
morphological and transcriptional modeling of early heart the clinical potential of high-resolution organoids. Adv Drug
development. Curr Top Dev Biol. 2024;156:121-156. Deliv Rev. 2024;207:115202.
doi: 10.1016/bs.ctdb.2024.02.005 doi: 10.1016/j.addr.2024.115202
42. Fang Y, Guo Y, Wu B, et al. Expanding embedded 3D 55. Natan Roberto de B, Canran W, Surjendu M, et al. Engineered
bioprinting capability for engineering complex organs with organoids for biomedical applications. Adv Drug Deliv Rev.
freeform vascular networks. Adv Mater (Deerfield Beach, 2023;203:115142.
Fla). 2023;35(22):e2205082. doi: 10.1016/j.addr.2023.115142
doi: 10.1002/adma.202205082
56. Zhe L, Weizi G, Fukang L, et al. Vat photopolymerization
43. Cui H, Liu C, Esworthy T, et al. 4D physiologically adaptable based digital light processing 3D printing hydrogels in
cardiac patch: A 4-month in vivo study for the treatment of biomedical fields: key parameters and perspective. Addit
myocardial infarction. Sci Adv. 2020;6(26):eabb5067. Manuf. 2024;94:104443.
doi: 10.1126/sciadv.abb5067 doi: 10.1016/j.addma.2024.104443
44. Zhang Z, Wu C, Dai C, et al. A multi-axis robot-based 57. Jennifer Sally S, Anuradha R, Venkatachalam Deepa P.
bioprinting system supporting natural cell function Development of midbrain dopaminergic neurons and
preservation and cardiac tissue fabrication. Bioact Mater. the advantage of using hiPSCs as a model system to study
2022;18:138-150. Parkinson’s disease. Neuroscience. 2024;546:1-19.
doi: 10.1016/j.bioactmat.2022.02.009 doi: 10.1016/j.neuroscience.2024.03.025
Volume 11 Issue 4 (2025) 90 doi: 10.36922/IJB025190184