Page 98 - v11i4
P. 98

International Journal of Bioprinting                                        Printed organoids for medicine




            33.  Li J, Han S, Yu F, Li T, Liao B, Liu F. Mapping the landscape   45.  Fareez UNM, Naqvi SAA, Mahmud M, Temirel M.
               of PSC-CM research through bibliometric analysis.  Front   Computational fluid dynamics (CFD) analysis of
               Cardiovasc Med. 2024;11:1435874.                   bioprinting. Adv Healthc Mater. 2024;13(20):e2400643.
               doi: 10.3389/fcvm.2024.1435874                     doi: 10.1002/adhm.202400643
            34.  Wang Y, Hou Y, Hao T, et al. Model construction and clinical   46.  Abolhassani S, Fattahi R, Safshekan F, Saremi J, Hasanzadeh
               therapeutic potential of engineered cardiac organoids for   E. Advances in 4D bioprinting: the next frontier in
               cardiovascular diseases. Biomater Transl. 2024;5(4):337-354.  regenerative medicine and tissue engineering applications.
               doi: 10.12336/biomatertransl.2024.04.002           Adv Healthc Mater. 2025;14(4):e2403065.
                                                                  doi: 10.1002/adhm.202403065
            35.  Nwokoye PN, Abilez OJ. Blood vessels in a dish: the
               evolution, challenges, and potential of vascularized tissues   47.  Wu J, Fu J. Toward developing human organs via embryo
               and organoids. Front Cardiovasc Med. 2024;11:1336910.  models and chimeras. Cell. 2024;187(13):3194-3219.
               doi: 10.3389/fcvm.2024.1336910                     doi: 10.1016/j.cell.2024.05.027
            36.  Khoury RE, Nagiah N, Mudloff JA, Thakur V, Chattopadhyay   48.  Wu Y, Qin M, Yang X. Organ bioprinting: progress, challenges
               M, Joddar B. 3D bioprinted spheroidal droplets for engineering   and outlook. J Mater Chem B. 2023;11(43):10263-10287.
               the  heterocellular  coupling  between  cardiomyocytes  and      doi: 10.1039/d3tb01630g
               cardiac fibroblasts. Cyborg Bionic Syst. 2021;2021:9864212.  49.  Roza Vaez G, Ileana LC, Matthew CM, Vikramaditya GY.
               doi: 10.34133/2021/9864212                         Brain organoids: a new, transformative investigational tool
            37.  Mohr E, Thum T, Bär C. Accelerating cardiovascular   for neuroscience research. Adv Biosyst. 2018;3(1):174.
               research: recent advances in translational 2D and 3D heart      doi: 10.1002/adbi.201800174
               models. Eur J Heart Fail. Oct 2022;24(10):1778-1791.  50.  Renjitha G, Rakhi P. Bioengineering of brain organoids:
               doi: 10.1002/ejhf.2631                             advancements and challenges. Tissue Eng. 2022:399-414.
            38.  Zhang W, Chen Y, Li M, et al. A PDA-functionalized 3d      doi: 10.1016/b978-0-12-824064-9.00002-2
               lung scaffold bioplatform to construct complicated breast   51.  Madeline AL, Magdalena R, Carol-Anne M, et al.
               tumor microenvironment for anticancer drug screening and   Cerebral organoids model human brain development and
               immunotherapy. Adv Sci (Weinh). 2023;10(26):e2302855.  microcephaly. Nature. 2013;501(7467):373-379.
               doi: 10.1002/advs.202302855                        doi: 10.1038/nature12517
            39.  Li S, Li J, Xu J, et al. Removal-free and multicellular   52.  Jeong E, Choi S, Cho SW. Recent advances in brain organoid
               suspension bath-based 3D bioprinting. Adv Mater (Deerfield   technology for human brain research.  ACS Appl Mater
               Beach, Fla). 2024;36(48):e2406891.                 Interfaces. 2023;15(1):200-219.
               doi: 10.1002/adma.202406891                        doi: 10.1021/acsami.2c17467
            40.  Hoang P, Sun S, Tarris BA, Ma Z. Controlling morphology   53.  Cadena MA, Sing A, Taylor K, et al. A 3D bioprinted cortical
               and functions of cardiac organoids by two-dimensional   organoid platform for modeling human brain development.
               geometrical templates. Cells Tissues Organs. 2023;212(1):64-73.  Adv Healthc Mater. 2024;13(27):e2401603.
               doi: 10.1159/000521787                             doi: 10.1002/adhm.202401603
            41.  Noël ES. Cardiac construction—recent advances in   54.  Jihoon K, Sujin H, Sunghun C, Yoojin C, Noo Li J. Revealing
               morphological and transcriptional modeling of early heart   the clinical potential of high-resolution organoids. Adv Drug
               development. Curr Top Dev Biol. 2024;156:121-156.  Deliv Rev. 2024;207:115202.
               doi: 10.1016/bs.ctdb.2024.02.005                   doi: 10.1016/j.addr.2024.115202
            42.  Fang Y, Guo Y, Wu B, et al. Expanding embedded 3D   55.  Natan Roberto de B, Canran W, Surjendu M, et al. Engineered
               bioprinting capability for engineering complex organs with   organoids for biomedical applications. Adv Drug Deliv Rev.
               freeform vascular networks.  Adv Mater (Deerfield Beach,   2023;203:115142.
               Fla). 2023;35(22):e2205082.                        doi: 10.1016/j.addr.2023.115142
               doi: 10.1002/adma.202205082
                                                               56.  Zhe L, Weizi G, Fukang L, et al. Vat photopolymerization
            43.  Cui H, Liu C, Esworthy T, et al. 4D physiologically adaptable   based digital light processing 3D printing hydrogels in
               cardiac patch: A 4-month in vivo study for the treatment of   biomedical fields: key parameters and perspective.  Addit
               myocardial infarction. Sci Adv. 2020;6(26):eabb5067.  Manuf. 2024;94:104443.
               doi: 10.1126/sciadv.abb5067                        doi: 10.1016/j.addma.2024.104443
            44.  Zhang Z, Wu C, Dai C, et al. A multi-axis robot-based   57.  Jennifer  Sally S, Anuradha  R, Venkatachalam Deepa P.
               bioprinting  system  supporting  natural  cell  function   Development of midbrain dopaminergic neurons and
               preservation and cardiac tissue fabrication.  Bioact Mater.   the advantage of using hiPSCs as a model system to study
               2022;18:138-150.                                   Parkinson’s disease. Neuroscience. 2024;546:1-19.
               doi:  10.1016/j.bioactmat.2022.02.009              doi: 10.1016/j.neuroscience.2024.03.025


            Volume 11 Issue 4 (2025)                        90                            doi: 10.36922/IJB025190184
   93   94   95   96   97   98   99   100   101   102   103