Page 102 - v11i4
P. 102

International Journal of Bioprinting                                        Printed organoids for medicine




               for infiltration of IL-17A producing T cells: focus on the   139. Mohamed E-T, Syed Arman R, Rasha B, et al. Unraveling the
               crosstalk between T cells and psoriatic keratinocytes. Acta   tumor microenvironment: insights into cancer metastasis
               Biomater. 2021;136:210-222.                        and therapeutic strategies. Cancer Lett. 2024;591:216894.
               doi:  10.1016/j.actbio.2021.09.018                 doi: 10.1016/j.canlet.2024.216894
            128. Shin  JU,  Abaci  HE,  Herron  L,  et  al.  Recapitulating  T  cell   140. Wu X, Jin Z, Li B, et al. Deciphering of intra-tumoural
               infiltration in 3D psoriatic skin models for patient-specific   heterogeneity and the interplay between metastasis-
               drug testing. Sci Rep. 2020;10(1):4123.            associated meta-program and myofibroblasts in gastric
               doi: 10.1038/s41598-020-60275-0                    cancer. Clin Transl Med. 2025;15(5):e70319.
                                                                  doi: 10.1002/ctm2.70319
            129. Lorthois I, Simard M, Morin S, Pouliot R. Infiltration of T
               cells into a three-dimensional psoriatic skin model mimics   141. Julia AL, Lance LM, Rakesh KJ. Compressive stresses in cancer:
               pathological key features. Int J Mol Sci. 2019;20(7):1670.  characterization and implications for tumour progression and
               doi: 10.3390/ijms20071670                          treatment. Nat Rev Cancer. 2024;24(11):768-791.
                                                                  doi: 10.1038/s41568-024-00745-z
            130. Gong L, Li J, Zhang J, et al. An interleukin-4-loaded bi-layer
               3D printed scaffold promotes osteochondral regeneration.   142. Francisco B, Joana C, Maria M, João JS, Carla V. 3D
               Acta Biomater. 2020;117:246-260.                   bioprinting models for glioblastoma: from scaffold design to
               doi:  10.1016/j.actbio.2020.09.039                 therapeutic application. Adv Mater. 2025;37(18):e2501994.
                                                                  doi: 10.1002/adma.202501994
            131. Derman ID, Rivera T, Garriga Cerda L, et al. Advancements
               in 3D skin bioprinting: processes, bioinks, applications and   143. Yan L, Haijun C, Haitao C. Precision spatial control of tumor‐
               sensor integration. Int J Extrem Manuf. 2025;7(1):012009.  stroma  interactions  in  cancer  models  via  3D  bioprinting
               doi: 10.1088/2631-7990/ad878c                      for advanced research and therapy. Adv Funct Mater. 2025;
                                                                  2503391.
            132. Zhou Z, Pang Y, Ji J, et al. Harnessing 3D in vitro systems to
               model immune responses to solid tumours: a step towards      doi: 10.1002/adfm.202503391
               improving and creating personalized immunotherapies. Nat   144. Rong J, Xia L, Qian Z, et al. Anti-tumor immune potentiation
               Rev Immunol. 2024;24(1):18-32.                     targets-engineered nanobiotechnologies: design principles
               doi: 10.1038/s41577-023-00896-4                    and applications. Prog Mater Sci. 2024;142:101230.
                                                                  doi: 10.1016/j.pmatsci.2023.101230
            133. Zhao K-y, Du Y-x, Cao H-m, Su L-y, Su X-l, Li X. The
               biological macromolecules constructed Matrigel for   145. Pengcheng Z, Xuanlong D, Weilu J, Kun F, Yewei Z. Engineered
               cultured organoids  in  biomedical and  tissue  engineering.   extracellular vesicles for targeted reprogramming of cancer-
               Article. Colloids Surf B Biointerfaces. 2025;247:114435.  associated fibroblasts to potentiate therapy of pancreatic
               doi: 10.1016/j.colsurfb.2024.114435                cancer. Signal Transduct Target Ther. 2024;9(1):1.
                                                                  doi: 10.1038/s41392-024-01872-7
            134. Di Piazza E, Pandolfi E, Cacciotti I, et al. Bioprinting
               technology in skin, heart, pancreas and cartilage tissues:   146. Hermida MA, Kumar JD, Schwarz D, et al. Three dimensional
               progress and challenges in clinical practice. Int J Environ Res   in vitro models of cancer: bioprinting multilineage
               Public Health. 2021;18(20):10806.                  glioblastoma models. Adv Biol Regul. 2020;75:100658.
               doi: 10.3390/ijerph182010806                       doi: 10.1016/j.jbior.2019.100658
            135. Wang Y, Li H, Zhang J, Chen M, Pan Y, Lou X. 3D   147. Sun Q, Tan SH, Chen Q, et al. Microfluidic formation of
               bioprinting inner ear organ of corti organoids induce   coculture tumor spheroids with stromal cells as a novel
               hair cell regeneration. J Biomed Mater Res A. 2025;113(3):   3D tumor model for drug testing. ACS Biomater Sci Eng.
               e37892.                                            2018;4(12):4425-4433.
               doi: 10.1002/jbm.a.37892                           doi: 10.1021/acsbiomaterials.8b00904
            136. Shukla P, Yeleswarapu S, Heinrich MA, Prakash J, Pati F.   148. Godier C, Baka Z, Lamy L, et al. A 3D bio-printed-based
               Mimicking tumor microenvironment by 3D bioprinting: 3D   model for pancreatic ductal adenocarcinoma.  Diseases.
               cancer modeling. Biofabrication. 2022;14(3):6d11.  2024;12(9):206.
               doi: 10.1088/1758-5090/ac6d11                      doi: 10.3390/diseases12090206
            137. Lee Y, Min J, Kim S, Park W, Ko J, Jeon NL. Recapitulating   149. Meng F, Meyer CM, Joung D, Vallera DA, McAlpine MC,
               the cancer-immunity cycle on a chip.  Adv  Healthc  Mater.   Panoskaltsis-Mortari A. 3D bioprinted in vitro metastatic
               2025;14(1):e2401927.                               models via reconstruction of tumor microenvironments.
               doi: 10.1002/adhm.202401927                        Adv Mater (Deerfield Beach, Fla). 2019;31(10):e1806899.
                                                                  doi: 10.1002/adma.201806899
            138. Fan H, Demirci U, Chen P. Emerging organoid models:
               leaping forward in cancer research.  J Hematol Oncol.   150. Drost J, Clevers H. Organoids in cancer research. Nat Rev
               2019;12(1):142.                                    Cancer. 2018;18(7):407-418.
               doi: 10.1186/s13045-019-0832-4                     doi: 10.1038/s41568-018-0007-6



            Volume 11 Issue 4 (2025)                        94                            doi: 10.36922/IJB025190184
   97   98   99   100   101   102   103   104   105   106   107