Page 102 - v11i4
P. 102
International Journal of Bioprinting Printed organoids for medicine
for infiltration of IL-17A producing T cells: focus on the 139. Mohamed E-T, Syed Arman R, Rasha B, et al. Unraveling the
crosstalk between T cells and psoriatic keratinocytes. Acta tumor microenvironment: insights into cancer metastasis
Biomater. 2021;136:210-222. and therapeutic strategies. Cancer Lett. 2024;591:216894.
doi: 10.1016/j.actbio.2021.09.018 doi: 10.1016/j.canlet.2024.216894
128. Shin JU, Abaci HE, Herron L, et al. Recapitulating T cell 140. Wu X, Jin Z, Li B, et al. Deciphering of intra-tumoural
infiltration in 3D psoriatic skin models for patient-specific heterogeneity and the interplay between metastasis-
drug testing. Sci Rep. 2020;10(1):4123. associated meta-program and myofibroblasts in gastric
doi: 10.1038/s41598-020-60275-0 cancer. Clin Transl Med. 2025;15(5):e70319.
doi: 10.1002/ctm2.70319
129. Lorthois I, Simard M, Morin S, Pouliot R. Infiltration of T
cells into a three-dimensional psoriatic skin model mimics 141. Julia AL, Lance LM, Rakesh KJ. Compressive stresses in cancer:
pathological key features. Int J Mol Sci. 2019;20(7):1670. characterization and implications for tumour progression and
doi: 10.3390/ijms20071670 treatment. Nat Rev Cancer. 2024;24(11):768-791.
doi: 10.1038/s41568-024-00745-z
130. Gong L, Li J, Zhang J, et al. An interleukin-4-loaded bi-layer
3D printed scaffold promotes osteochondral regeneration. 142. Francisco B, Joana C, Maria M, João JS, Carla V. 3D
Acta Biomater. 2020;117:246-260. bioprinting models for glioblastoma: from scaffold design to
doi: 10.1016/j.actbio.2020.09.039 therapeutic application. Adv Mater. 2025;37(18):e2501994.
doi: 10.1002/adma.202501994
131. Derman ID, Rivera T, Garriga Cerda L, et al. Advancements
in 3D skin bioprinting: processes, bioinks, applications and 143. Yan L, Haijun C, Haitao C. Precision spatial control of tumor‐
sensor integration. Int J Extrem Manuf. 2025;7(1):012009. stroma interactions in cancer models via 3D bioprinting
doi: 10.1088/2631-7990/ad878c for advanced research and therapy. Adv Funct Mater. 2025;
2503391.
132. Zhou Z, Pang Y, Ji J, et al. Harnessing 3D in vitro systems to
model immune responses to solid tumours: a step towards doi: 10.1002/adfm.202503391
improving and creating personalized immunotherapies. Nat 144. Rong J, Xia L, Qian Z, et al. Anti-tumor immune potentiation
Rev Immunol. 2024;24(1):18-32. targets-engineered nanobiotechnologies: design principles
doi: 10.1038/s41577-023-00896-4 and applications. Prog Mater Sci. 2024;142:101230.
doi: 10.1016/j.pmatsci.2023.101230
133. Zhao K-y, Du Y-x, Cao H-m, Su L-y, Su X-l, Li X. The
biological macromolecules constructed Matrigel for 145. Pengcheng Z, Xuanlong D, Weilu J, Kun F, Yewei Z. Engineered
cultured organoids in biomedical and tissue engineering. extracellular vesicles for targeted reprogramming of cancer-
Article. Colloids Surf B Biointerfaces. 2025;247:114435. associated fibroblasts to potentiate therapy of pancreatic
doi: 10.1016/j.colsurfb.2024.114435 cancer. Signal Transduct Target Ther. 2024;9(1):1.
doi: 10.1038/s41392-024-01872-7
134. Di Piazza E, Pandolfi E, Cacciotti I, et al. Bioprinting
technology in skin, heart, pancreas and cartilage tissues: 146. Hermida MA, Kumar JD, Schwarz D, et al. Three dimensional
progress and challenges in clinical practice. Int J Environ Res in vitro models of cancer: bioprinting multilineage
Public Health. 2021;18(20):10806. glioblastoma models. Adv Biol Regul. 2020;75:100658.
doi: 10.3390/ijerph182010806 doi: 10.1016/j.jbior.2019.100658
135. Wang Y, Li H, Zhang J, Chen M, Pan Y, Lou X. 3D 147. Sun Q, Tan SH, Chen Q, et al. Microfluidic formation of
bioprinting inner ear organ of corti organoids induce coculture tumor spheroids with stromal cells as a novel
hair cell regeneration. J Biomed Mater Res A. 2025;113(3): 3D tumor model for drug testing. ACS Biomater Sci Eng.
e37892. 2018;4(12):4425-4433.
doi: 10.1002/jbm.a.37892 doi: 10.1021/acsbiomaterials.8b00904
136. Shukla P, Yeleswarapu S, Heinrich MA, Prakash J, Pati F. 148. Godier C, Baka Z, Lamy L, et al. A 3D bio-printed-based
Mimicking tumor microenvironment by 3D bioprinting: 3D model for pancreatic ductal adenocarcinoma. Diseases.
cancer modeling. Biofabrication. 2022;14(3):6d11. 2024;12(9):206.
doi: 10.1088/1758-5090/ac6d11 doi: 10.3390/diseases12090206
137. Lee Y, Min J, Kim S, Park W, Ko J, Jeon NL. Recapitulating 149. Meng F, Meyer CM, Joung D, Vallera DA, McAlpine MC,
the cancer-immunity cycle on a chip. Adv Healthc Mater. Panoskaltsis-Mortari A. 3D bioprinted in vitro metastatic
2025;14(1):e2401927. models via reconstruction of tumor microenvironments.
doi: 10.1002/adhm.202401927 Adv Mater (Deerfield Beach, Fla). 2019;31(10):e1806899.
doi: 10.1002/adma.201806899
138. Fan H, Demirci U, Chen P. Emerging organoid models:
leaping forward in cancer research. J Hematol Oncol. 150. Drost J, Clevers H. Organoids in cancer research. Nat Rev
2019;12(1):142. Cancer. 2018;18(7):407-418.
doi: 10.1186/s13045-019-0832-4 doi: 10.1038/s41568-018-0007-6
Volume 11 Issue 4 (2025) 94 doi: 10.36922/IJB025190184