Page 158 - v11i4
P. 158

International Journal of Bioprinting                                         AI for sustainable bioprinting




            44.  Guan Q-F, Yang H-B, Han Z-M, Ling Z-C, Yu S-H. An   56.  GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini
               all-natural  bioinspired  structural  material  for  plastic   A. Crosslinking strategies for 3D bioprinting of polymeric
               replacement. Nat Commun. 2020;11(1):5401.          hydrogels. Small. 2020;16(35):2002931.
               doi: 10.1038/s41467-020-19174-1                    doi: 10.1002/smll.202002931
            45.  Drury JL, Mooney DJ. Hydrogels for tissue engineering:   57.  Naghieh S, Chen X. Printability–a key issue in extrusion-
               scaffold design variables and applications.  Biomaterials.   based bioprinting. J Pharm Anal. 2021;11(5):564-579.
               2003;24(24):4337-4351.                             doi: 10.1016/j.jpha.2021.02.001
               doi: 10.1016/S0142-9612(03)00340-5              58.  McCarthy J. The inversion of functions defined by Turing
            46.  Park JY, Choi Y-J, Shim J-H, Park JH, Cho D-W. Development   machines.  Automata Studies. Princeton University Press,
               of a 3D cell printed structure as an alternative to autologs   Princeton; 1956:177-181.
               cartilage for auricular reconstruction. J Biomed Mater Res   59.  Karthikeyan R, Geetha P, Ramaraj E. Rule based system
               Part B App Biomater. 2017;105(5):1016-1028.        for better prediction of diabetes. In: 2019 3rd International
               doi: 10.1002/jbm.b.33639                           Conference on Computing and Communications Technologies
            47.  Chen H, Gonnella G, Huang J, Di-Silvio L. Fabrication of   (ICCCT). Chennai, India; 2019: 195-203.
               3D bioprinted bi-phasic scaffold for bone-cartilage interface   doi:  10.1109/ICCCT2.2019.8824842.
               regeneration. Biomimetics. 2023;8(1):87.        60.  Liu H, Gegov A, Cocea M. Rule-based systems: a granular
               doi: 10.3390/biomimetics8010087                    computing perspective. Granul Comput. 2016;1(4):259-274.
            48.  Critchley S, Kelly D. Bioinks for bioprinting functional      doi: 10.1007/s41066-016-0021-6
               meniscus and articular cartilage.  J  3D  Print  Med.   61.  Asemi A, Ko A, Nowkarizi M. Intelligent libraries: a review
               2017;1:269-290.                                    on expert systems, artificial intelligence, and robot. Libr Hi
               doi: 10.2217/3dp-2017-0012                         Tech. 2021;39:412-434.
            49.  Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting:      doi: 10.1108/LHT-02-2020-0038
               A comprehensive review on cell-laden hydrogels, bioink   62.  Wang L, Yan J, Mu L, Huang L. Knowledge discovery from
               formulations, and future perspectives.  Appl  Mater  Today.   remote sensing images: a review. WIREs Data Min Knowl
               2020;18:100479.                                    Discov. 2020;10(5):e1371.
               doi: 10.1016/j.apmt.2019.100479                    doi: 10.1002/widm.1371
            50.  Chung JHY, Naficy S, Yue Z, et al. Bio-ink properties and   63.  Georgevici AI, Terblanche M. Neural networks and
               printability for extrusion printing living cells. Biomater Sci.   deep learning: a brief introduction.  Intensive Care Med.
               2013;1(7):763-773.                                 2019;45(5):712-714.
               doi: 10.1039/C3BM00012E                            doi: 10.1007/s00134-019-05537-w
            51.  Nordahl SL, Scown CD. Recommendations for life-cycle   64.  Shane S, Jemin G, Carl B. Scaling distributed artificial
               assessment  of  recyclable  plastics  in  a  circular  economy.   intelligence/machine learning for decision dominance in
               Chem Sci. 2024;15(25):9397-9407.                   all-domain operations. In: Proceedings SPIE 12113, Artificial
               doi: 10.1039/D4SC01340A                            Intelligence and Machine Learning for Multi-domain
            52.  Oladapo BI, Bowoto OK, Adebiyi VA, Ikumapayi OM.   Operations Applications IV; 2022:1211306.
               Net zero on 3D printing filament recycling: a sustainable      doi: 10.1117/12.2621199
               analysis. Sci Total Environ. 2023;894:165046.   65.  Kumari NMJ, Krishna KKV. Prognosis of diseases using
               doi: 10.1016/j.scitotenv.2023.165046               machine learning algorithms: a survey. In: 2018 International
            53.  Xu X, Eatmon YL, Christie KSS, et al. Tough and recyclable   Conference on Current Trends Towards Converging
               phase-separated supramolecular gels via a dehydration–  Technologies (ICCTCT). Coimbatore, India; 2018:1-9.
               hydration cycle. JACS Au. 2023;3(10):2772-2779.    doi:  10.1109/ICCTCT.2018.8550902.
               doi: 10.1021/jacsau.3c00326                     66.  Chen Y, Chen H, Harker A, Liu Y, Huang J. A supervised
            54.  Ji D, Liu J, Zhao J, et al. Sustainable 3D printing by reversible   machine learning tool to predict the bactericidal efficiency
               salting-out effects with aqueous salt solutions. Nat Commun.   of nanostructured surface. J Nanobiotechnol. 2024;22(1):748.
               2024;15(1):3925.                                   doi: 10.1186/s12951-024-02974-8
               doi: 10.1038/s41467-024-48121-7                 67.  Bonatti AF, Vozzi G, De Maria C. Enhancing quality control
                                                                  in bioprinting through machine learning.  Biofabrication.
            55.  Sun Y, Yu K, Nie J, et al. Modeling the printability of
               photocuring and strength adjustable hydrogel bioink   2024;16(2):022001.
               during  projection-based  3D  bioprinting.  Biofabrication.      doi: 10.1088/1758-5090/ad2189
               2021;13(3):035032.                              68.  Gan Z, Li H, Wolff SJ, et al. Data-driven microstructure and
               doi: 10.1088/1758-5090/aba413                      microhardness design in additive manufacturing using a



            Volume 11 Issue 4 (2025)                       150                            doi: 10.36922/IJB025170164
   153   154   155   156   157   158   159   160   161   162   163