Page 157 - v11i4
P. 157
International Journal of Bioprinting AI for sustainable bioprinting
doi: 10.1002/adhm.201700939 doi: 10.1016/j.bprint.2024.e00360
22. Pereira RF, Bártolo PJ. 3D bioprinting of photocrosslinkable 33. Zuev DM, Nguyen AK, Putlyaev VI, Narayan RJ. 3D printing
hydrogel constructs. J Appl Polym Sci. 2015; and bioprinting using multiphoton lithography. Bioprinting.
132(48). 2020;20:e00090.
doi: 10.1002/app.42458 doi: 10.1016/j.bprint.2020.e00090
23. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov 34. Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting
A. Bioink properties before, during and after 3D bioprinting. for engineering complex tissues. Biotechnol Adv.
Biofabrication. 2016;8(3):032002. 2016;34(4):422-434.
doi: 10.1088/1758-5090/8/3/032002 doi: 10.1016/j.biotechadv.2015.12.011
24. Ng WL, Shkolnikov V. Jetting-based bioprinting: process, 35. Sun W, Starly B, Daly AC, et al. The bioprinting roadmap.
dispense physics, and applications. Bio Des Manuf. Biofabrication. 2020;12(2):022002.
2024;7(5):771-799. doi: 10.1088/1758-5090/ab5158
doi: 10.1007/s42242-024-00285-3
36. Fang Y, Guo Y, Wu B, et al. Expanding embedded
25. Muthusamy S, Kannan S, Lee M, et al. 3D bioprinting 3D bioprinting capability for engineering complex
and microscale organization of vascularized tissue organs with freeform vascular networks. Adv Mater.
constructs using collagen-based bioink. Biotechnol Bioeng. 2023;35(22):2205082.
2021;118(8):3150-3163. doi: 10.1002/adma.202205082
doi: 10.1002/bit.27838
37. Sheybanikashani S, Zandi N, Hosseini D, Lotfi R, Simchi A.
26. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. A sustainable and self-healable silk fibroin nanocomposite
Printability and shape fidelity of bioinks in 3D bioprinting. with antibacterial and drug eluting properties for
Chem Rev. 2020;120(19):11028-11055. 3D printed wound dressings. J Mater Chem B. 2024;
doi: 10.1021/acs.chemrev.0c00084
12(3):784-799.
27. Chen H, Stampoultzis T, Papadopoulou A, Balabani S, doi: 10.1039/D3TB02363J
Huang J. Evaluation of rheological properties and shape 38. Qamruzzaman M, Ahmed F, Mondal MIH. An overview on
fidelity of polycaprolactone/hydroxyapatite inks for 3D
printing of osteochondral tissue scaffolds. Orthop Proc. starch-based sustainable hydrogels: potential applications
2021;103-B(SUPP_2):96-96. and aspects. J Polym Environ. 2022;30(1):19-50.
doi: 10.1302/1358-992X.2021.2.096 doi: 10.1007/s10924-021-02180-9
39. Soman SS, Govindraj M, Hashimi NA, Zhou J,
28. You S, Xiang Y, Hwang HH, et al. High cell density and
high-resolution 3D bioprinting for fabricating vascularized Vijayavenkataraman S. Bioprinting of human neural tissues
tissues. Sci Adv. 2023;9(8):eade7923. using a sustainable marine tunicate-derived bioink for
doi: 10.1126/sciadv.ade7923 translational medicine applications. IJB. 2022;8(4):604.
doi: 10.18063/ijb.v8i4.604
29. Chen H, Khong J, Huang J. Direct ink writing of
polycaprolactone/laponite composite for bone implants: 40. Arif ZU, Khalid MY, Noroozi R, et al. Additive manufacturing
3D characterization using x-ray micro CT. Orthop Proc. of sustainable biomaterials for biomedical applications.
2021;103-B(SUPP_16):74-74. Asian J Pharm Sci. 2023;18(3):100812.
doi: 10.1302/1358-992X.2021.16.07 doi: 10.1016/j.ajps.2023.100812
30. Guillotin B, Souquet A, Catros S, et al. Laser assisted 41. Whenish R, Ramakrishna S, Jaiswal AK, Manivasagam
bioprinting of engineered tissue with high cell G. A framework for the sustainability implications of
density and microscale organization. Biomaterials. 3D bioprinting through nature-inspired materials and
2010;31(28):7250-7256. structures. Bio Des Manuf. 2022;5(2):412-423.
doi: 10.1016/j.biomaterials.2010.05.055 doi: 10.1007/s42242-021-00168-x
31. Keriquel V, Oliveira H, Rémy M, et al. In situ printing of 42. Charlet A, Hirsch M, Schreiber S, Amstad E. Recycling
mesenchymal stromal cells, by laser-assisted bioprinting, of load-bearing 3D printable double network granular
for in vivo bone regeneration applications. Sci Rep. hydrogels. Small. 2022;18(12):2107128.
2017;7(1):1778. doi: 10.1002/smll.202107128
doi: 10.1038/s41598-017-01914-x
43. Merotto E, Pavan PG, Piccoli M. Three-dimensional
32. Afridi A, Al Rashid A, Koç M. Recent advances in bioprinting of naturally derived hydrogels for the production
the development of stereolithography-based additive of biomimetic living tissues: benefits and challenges.
manufacturing processes: a review of applications and Biomedicines. 2023;11(6):1742.
challenges. Bioprinting. 2024;43:e00360. doi: 10.3390/biomedicines11061742.
Volume 11 Issue 4 (2025) 149 doi: 10.36922/IJB025170164