Page 159 - v11i4
P. 159

International Journal of Bioprinting                                         AI for sustainable bioprinting




               self-organizing map. Engineering. 2019;5(4):730-735.  doi: 10.1002/advs.202202638
               doi: 10.1016/j.eng.2019.03.014
                                                               81.  Lee J, Oh SJ, An SH, Kim W-D, Kim S-H. Machine
            69.  Ramesh S, Deep A, Tamayol A, Kamaraj A, Mahajan   learning-based design strategy for 3D printable bioink:
               C, Madihally S. Advancing 3D bioprinting through   elastic modulus and yield stress determine printability.
               machine learning and artificial intelligence.  Bioprinting.   Biofabrication. 2020;12(3):035018.
               2024;38:e00331.                                    doi: 10.1088/1758-5090/ab8707
               doi: 10.1016/j.bprint.2024.e00331               82.  Zhang X, Chang T, Chen H, et al. Optimizing laser
            70.  Rathore AS, Nikita S, Thakur G, Mishra S. Artificial   parameters and exploring building direction dependence of
               intelligence and machine learning applications in   corrosion behavior in NiTi alloys fabricated by laser powder
               biopharmaceutical  manufacturing.  Trends Biotechnol.   bed fusion. J Mater Res Technol. 2024;33:4023-4032.
               2023;41(4):497-510.                                doi: 10.1016/j.jmrt.2024.10.105
               doi: 10.1016/j.tibtech.2022.08.007              83.  Ng WL, An J, Chua CK. Process, material, and regulatory
            71.  Ng  WL,  Goh  GL,  Goh  GD,  Ten  JSJ,  Yeong  WY.  Progress   considerations  for  3D  printed  medical  devices  and  tissue
               and opportunities for machine learning in materials   constructs. Engineering. 2024;36:146-166.
               and processes of additive manufacturing.  Adv Mater.   doi: 10.1016/j.eng.2024.01.028
               2024;36(34):2310006.                            84.  Ng WL, Alvin C, Soon OY, Chua CK. Deep learning for
               doi: 10.1002/adma.202310006                        fabrication and maturation of 3D bioprinted tissues and
            72.  Grira S, Mozumder MS, Mourad A-HI, Ramadan M,    organs. Virtual Phys Prototyp. 2020;15(3):340-358.
               Khalifeh HA, Alkhedher M. 3D bioprinting of natural      doi: 10.1080/17452759.2020.1771741
               materials and their AI-enhanced printability: a review.   85.  Bone JM, Childs CM, Menon A, et al. Hierarchical machine
               Bioprinting. 2025;46:e00385.                       learning for high-fidelity 3D printed biopolymers.  ACS
               doi: 10.1016/j.bprint.2025.e00385                  Biomater Sci Eng. 2020;6(12):7021-7031.
            73.  Yu C, Jiang J. A perspective on using machine learning in 3D      doi: 10.1021/acsbiomaterials.0c00755
               bioprinting. IJB. 2020;6(1):253.                86.  Chen  B,  Dong  J,  Ruelas  M,  et  al.  Artificial  intelligence-
               doi: 10.18063/ijb.v6i1.253                         assisted high-throughput screening of printing conditions
            74.  Sun J, Yao  K, An J, Jing  L, Huang K,  Huang D. Machine   of hydrogel architectures for accelerated diabetic wound
               learning and 3D bioprinting. IJB. 2023;9(4):717.   healing. Adv Funct Mater. 2022;32(38):2201843.
               doi: 10.18063/ijb.717                              doi: 10.1002/adfm.202201843
            75.  Wu Y, Ding X, Wang Y, Ouyang D. Harnessing the power of   87.  Fu Z, Angeline V, Sun W. Evaluation of printing parameters
               machine learning into tissue engineering: current progress   on 3D extrusion printing of pluronic hydrogels and
               and future prospects. Burns Trauma. 2024;12.       machine learning guided parameter recommendation. IJB.
               doi: 10.1093/burnst/tkae053                        2021;7(4):434.
                                                                  doi: 10.18063/ijb.v7i4.434
            76.  Ma L, Yu S, Xu X, Moses Amadi S, Zhang J, Wang Z.
               Application of artificial intelligence in 3D printing physical   88.  Xu H, Liu Q, Casillas J, et al. Prediction of cell viability
               organ models. Mater Today Bio. 2023;23:100792.     in dynamic optical projection stereolithography-based
               doi: 10.1016/j.mtbio.2023.100792                   bioprinting using machine learning.  J Intell Manuf.
                                                                  2022;33(4):995-1005.
            77.  Li Z, Song P, Li G, et al. AI energized hydrogel design,      doi: 10.1007/s10845-020-01708-5
               optimization and application in biomedicine. Mater Today
               Bio. 2024;25:101014.                            89.  Zhang  C,  Elvitigala  KCML,  Mubarok  W,  Okano  Y,  Sakai
               doi: 10.1016/j.mtbio.2024.101014                   S. Machine learning-based prediction and optimisation
                                                                  framework for as-extruded cell viability in extrusion-
            78.  Hardian  R,  Liang  Z, Zhang  X,  Szekely  G.  Artificial   based 3D bioprinting.  Virtual Phys Prototyp. 2024;
               intelligence: the silver bullet for sustainable materials   19(1):e2400330.
               development. Green Chem. 2020;22(21):7521-7528.     doi: 10.1080/17452759.2024.2400330
               doi: 10.1039/D0GC02956D
                                                               90.  Rojek I, Mikołajewski D, Kopowski J, Kotlarz P, Piechowiak
            79.  Greener JG, Kandathil SM, Moffat L, Jones DT. A guide   M, Dostatni E. Reducing waste in 3D printing using a neural
               to machine learning for biologists. Nat Rev Mol Cell Biol.   network based on an own  elbow exoskeleton.  Materials.
               2022;23(1):40-55.                                  2021;14(17):5074.
               doi: 10.1038/s41580-021-00407-0                    doi:  10.3390/ma14175074.
            80.  Nadernezhad A, Groll J. Machine learning reveals a general   91.  Wu D, Xu C. Predictive modeling of droplet formation
               understanding of printability in formulations based on   processes in inkjet-based bioprinting.  J Manuf Sci Eng.
               rheology additives. Adv Sci. 2022;9(29):2202638.   2018;140(10):101007.


            Volume 11 Issue 4 (2025)                       151                            doi: 10.36922/IJB025170164
   154   155   156   157   158   159   160   161   162   163   164