Page 159 - v11i4
P. 159
International Journal of Bioprinting AI for sustainable bioprinting
self-organizing map. Engineering. 2019;5(4):730-735. doi: 10.1002/advs.202202638
doi: 10.1016/j.eng.2019.03.014
81. Lee J, Oh SJ, An SH, Kim W-D, Kim S-H. Machine
69. Ramesh S, Deep A, Tamayol A, Kamaraj A, Mahajan learning-based design strategy for 3D printable bioink:
C, Madihally S. Advancing 3D bioprinting through elastic modulus and yield stress determine printability.
machine learning and artificial intelligence. Bioprinting. Biofabrication. 2020;12(3):035018.
2024;38:e00331. doi: 10.1088/1758-5090/ab8707
doi: 10.1016/j.bprint.2024.e00331 82. Zhang X, Chang T, Chen H, et al. Optimizing laser
70. Rathore AS, Nikita S, Thakur G, Mishra S. Artificial parameters and exploring building direction dependence of
intelligence and machine learning applications in corrosion behavior in NiTi alloys fabricated by laser powder
biopharmaceutical manufacturing. Trends Biotechnol. bed fusion. J Mater Res Technol. 2024;33:4023-4032.
2023;41(4):497-510. doi: 10.1016/j.jmrt.2024.10.105
doi: 10.1016/j.tibtech.2022.08.007 83. Ng WL, An J, Chua CK. Process, material, and regulatory
71. Ng WL, Goh GL, Goh GD, Ten JSJ, Yeong WY. Progress considerations for 3D printed medical devices and tissue
and opportunities for machine learning in materials constructs. Engineering. 2024;36:146-166.
and processes of additive manufacturing. Adv Mater. doi: 10.1016/j.eng.2024.01.028
2024;36(34):2310006. 84. Ng WL, Alvin C, Soon OY, Chua CK. Deep learning for
doi: 10.1002/adma.202310006 fabrication and maturation of 3D bioprinted tissues and
72. Grira S, Mozumder MS, Mourad A-HI, Ramadan M, organs. Virtual Phys Prototyp. 2020;15(3):340-358.
Khalifeh HA, Alkhedher M. 3D bioprinting of natural doi: 10.1080/17452759.2020.1771741
materials and their AI-enhanced printability: a review. 85. Bone JM, Childs CM, Menon A, et al. Hierarchical machine
Bioprinting. 2025;46:e00385. learning for high-fidelity 3D printed biopolymers. ACS
doi: 10.1016/j.bprint.2025.e00385 Biomater Sci Eng. 2020;6(12):7021-7031.
73. Yu C, Jiang J. A perspective on using machine learning in 3D doi: 10.1021/acsbiomaterials.0c00755
bioprinting. IJB. 2020;6(1):253. 86. Chen B, Dong J, Ruelas M, et al. Artificial intelligence-
doi: 10.18063/ijb.v6i1.253 assisted high-throughput screening of printing conditions
74. Sun J, Yao K, An J, Jing L, Huang K, Huang D. Machine of hydrogel architectures for accelerated diabetic wound
learning and 3D bioprinting. IJB. 2023;9(4):717. healing. Adv Funct Mater. 2022;32(38):2201843.
doi: 10.18063/ijb.717 doi: 10.1002/adfm.202201843
75. Wu Y, Ding X, Wang Y, Ouyang D. Harnessing the power of 87. Fu Z, Angeline V, Sun W. Evaluation of printing parameters
machine learning into tissue engineering: current progress on 3D extrusion printing of pluronic hydrogels and
and future prospects. Burns Trauma. 2024;12. machine learning guided parameter recommendation. IJB.
doi: 10.1093/burnst/tkae053 2021;7(4):434.
doi: 10.18063/ijb.v7i4.434
76. Ma L, Yu S, Xu X, Moses Amadi S, Zhang J, Wang Z.
Application of artificial intelligence in 3D printing physical 88. Xu H, Liu Q, Casillas J, et al. Prediction of cell viability
organ models. Mater Today Bio. 2023;23:100792. in dynamic optical projection stereolithography-based
doi: 10.1016/j.mtbio.2023.100792 bioprinting using machine learning. J Intell Manuf.
2022;33(4):995-1005.
77. Li Z, Song P, Li G, et al. AI energized hydrogel design, doi: 10.1007/s10845-020-01708-5
optimization and application in biomedicine. Mater Today
Bio. 2024;25:101014. 89. Zhang C, Elvitigala KCML, Mubarok W, Okano Y, Sakai
doi: 10.1016/j.mtbio.2024.101014 S. Machine learning-based prediction and optimisation
framework for as-extruded cell viability in extrusion-
78. Hardian R, Liang Z, Zhang X, Szekely G. Artificial based 3D bioprinting. Virtual Phys Prototyp. 2024;
intelligence: the silver bullet for sustainable materials 19(1):e2400330.
development. Green Chem. 2020;22(21):7521-7528. doi: 10.1080/17452759.2024.2400330
doi: 10.1039/D0GC02956D
90. Rojek I, Mikołajewski D, Kopowski J, Kotlarz P, Piechowiak
79. Greener JG, Kandathil SM, Moffat L, Jones DT. A guide M, Dostatni E. Reducing waste in 3D printing using a neural
to machine learning for biologists. Nat Rev Mol Cell Biol. network based on an own elbow exoskeleton. Materials.
2022;23(1):40-55. 2021;14(17):5074.
doi: 10.1038/s41580-021-00407-0 doi: 10.3390/ma14175074.
80. Nadernezhad A, Groll J. Machine learning reveals a general 91. Wu D, Xu C. Predictive modeling of droplet formation
understanding of printability in formulations based on processes in inkjet-based bioprinting. J Manuf Sci Eng.
rheology additives. Adv Sci. 2022;9(29):2202638. 2018;140(10):101007.
Volume 11 Issue 4 (2025) 151 doi: 10.36922/IJB025170164