Page 160 - v11i4
P. 160
International Journal of Bioprinting AI for sustainable bioprinting
doi: 10.1115/1.4040619 doi: 10.1016/j.jmsy.2023.05.007
92. Chen H, Bansal S, Plasencia DM, et al. Omnidirectional and 104. Finnveden G, Potting J. Life cycle assessment. In: Wexler
multi-material in situ 3D printing using acoustic levitation. P, ed. Encyclopedia of Toxicology (Third Edition). Academic
Adv Mater Technol. 2025;10(9):2401792. Press. Elsevier, Oxford, United Kingdom; 2014:74-77.
doi: 10.1002/admt.202401792
105. Luengo-Valderrey M-J, Pando-García J, Periáñez-Cañadillas
93. Wang X, Yang C, Yu Y, Zhao Y. In situ 3D bioprinting living I, Cervera-Taulet A. Analysis of the impact of the triple helix
photosynthetic scaffolds for autotrophic wound healing. on sustainable innovation targets in spanish technology
Research. 2022;2022:9794745. companies. Sustainability. 2020;12(8):3274.
doi: 10.34133/2022/9794745 doi: 10.3390/su12083274
94. Zhao W, Hu C, Lin S, et al. A closed-loop minimally invasive 106. Hakeem MM, Chin GH, Frendy, Ito H. Regional sustainable
3D printing strategy with robust trocar identification and development using a Quadruple Helix approach in Japan.
adaptive alignment. Addit Manuf. 2023;73:103701. Regl Stud Regl Sci. 2023;10(1):119-138.
doi: 10.1016/j.addma.2023.103701 doi: 10.1080/21681376.2023.2171313
95. Montano-Murillo R, Hirayama R, Plasencia DM. OpenMPD: 107. Ektefaie Y, Shen A, Bykova D, Marin MG, Zitnik
a low-level presentation engine for multimodal particle- M, Farhat M. Evaluating generalizability of artificial
based displays. ACM Trans Graph. 2023;42(2):Article 24. intelligence models for molecular datasets. Nat Mach Intell.
doi: 10.1145/3572896 2024;6(12):1512-1524.
doi: 10.1038/s42256-024-00931-6
96. Hirayama R, Christopoulos G, Martinez Plasencia D,
Subramanian S. High-speed acoustic holography with 108. Liu S, Chen Y, Wang Z, et al. The cutting-edge progress in
arbitrary scattering objects. Sci Adv. 2022;8(24):eabn7614. bioprinting for biomedicine: principles, applications, and
doi: 10.1126/sciadv.abn7614 future perspectives. MedComm. 2024;5(10):e753.
doi: 10.1002/mco2.753
97. Chen H, Bansal S, Plasencia DM, et al. Omnidirectional
and multi-material in situ 3D printing using acoustic 109. Goetz L, Seedat N, Vandersluis R, van der Schaar M.
levitation (Adv Mater Technol 9/2025). Adv Mater Technol. Generalization—a key challenge for responsible AI
2025;10(9):2570049. in patient-facing clinical applications. NJP Digit Med.
doi: 10.1002/admt.202570049 2024;7(1):126.
doi: 10.1038/s41746-024-01127-3
98. Zboinska MA, Sämfors S, Gatenholm P. Robotically
3D printed architectural membranes from ambient 110. Bonatti AF, Vozzi G, Chua CK, Maria CD. A deep learning
dried cellulose nanofibril-alginate hydrogel. Mater Des. quality control loop of the extrusion-based bioprinting
2023;236:112472. process. IJB. 2022;8(4):620.
doi: 10.1016/j.matdes.2023.112472 doi: 10.18063/ijb.v8i4.620
99. Arora A, Alderman JE, Palmer J, et al. The value of 111. Seol Y-J, Kang H-W, Lee SJ, Atala A, Yoo JJ. Bioprinting
standards for health datasets in artificial intelligence-based technology and its applications. Eur J Cardiothorac Surg.
applications. Nat Med. 2023;29(11):2929-2938. 2014;46(3):342-348.
doi: 10.1038/s41591-023-02608-w doi: 10.1093/ejcts/ezu148
100. Aldoseri A, Al-Khalifa KN, Hamouda AM. Re-thinking data 112. Mahadik B, Margolis R, McLoughlin S, et al. An open-
strategy and integration for artificial intelligence: concepts, source bioink database for microextrusion 3D printing.
opportunities, and challenges. Appl Sci. 2023;13(12):7082. Biofabrication. 2023;15(1):015008.
doi: 10.3390/app13127082 doi: 10.1088/1758-5090/ac933a
101. Shin J, Lee Y, Li Z, Hu J, Park SS, Kim K. Optimized 3D 113. Saalfeld S, Cardona A, Hartenstein V, Tomančák P.
bioprinting technology based on machine learning: a CATMAID: collaborative annotation toolkit for massive
review of recent trends and advances. Micromachines. amounts of image data. Bioinformatics. 2009;25(15):
2022;13(3):363. 1984-1986.
doi: 10.3390/mi13030363 doi: 10.1093/bioinformatics/btp266
102. Narodoslawsky M, Krotscheck C. The sustainable process 114. Finny AS. 3D bioprinting in bioremediation: a
index (SPI): evaluating processes according to environmental comprehensive review of principles, applications, and future
compatibility. J Hazard Mater. 1995;41(2):383-397. directions. Peer J. 2024;12:e16897.
doi: 10.1016/0304-3894(94)00114-V doi: 10.7717/peerj.16897
103. Kokare S, Oliveira JP, Godina R. Life cycle assessment of 115. Almadan A, Li W, Al Ibrahim M. Transfer learning with
additive manufacturing processes: a review. J Manuf Syst. domain adaptation for palynological image segmentation.
2023;68:536-559. Microsc Microanal. 2023;29(Supplement_1):1898-1899.
Volume 11 Issue 4 (2025) 152 doi: 10.36922/IJB025170164