Page 172 - v11i4
P. 172
International Journal of Bioprinting 3D-printed microstructure for bacteriostasis
39. Yong J, Chew KW, Khoo KS, Show PL, Chang JS. Prospects 48. Linklater DP, Nguyen HKD, Bhadra CM, Juodkazis S,
and development of algal-bacterial biotechnology Ivanova EP. Influence of nanoscale topology on bactericidal
in environmental management and protection. efficiency of black silicon surfaces. Nanotechnology.
Biotechnol Adv. 2021;47:107684. 2017;28(24):245301.
doi: 10.1016/j.biotechadv.2020.107684 doi: 10.1088/1361-6528/aa700e
40. Roager HM, Licht TR. Microbial tryptophan catabolites in 49. Bandara CD, Singh S, Afara IO, et al. Bactericidal effects of
health and disease. Nat Commun. 2018;9(1):3294. natural nanotopography of dragonfly wing on Escherichia
doi: 10.1038/s41467-018-05470-4 coli. ACS Appl Mater Interfaces. 2017;9(8):6746-6760.
41. Skoulas E, Manousaki A, Fotakis C, Stratakis E. Biomimetic doi: 10.1021/acsami.6b13666
surface structuring using cylindrical vector femtosecond 50. Linklater DP, Juodkazis S, Rubanov S, Ivanova EP. Comment
laser beams. Sci Rep. 2017;7:45114. on “Bactericidal Effects of Natural Nanotopography of
doi: 10.1038/srep45114 Dragonfly Wing on Escherichia coli”. ACS Appl Mater
42. Li Y, Zhang LY, Zhang C, Zhang ZR, Liu L. Bioinspired Interfaces. 2017;9(35):29387-29393.
antifouling Fe-based amorphous coating via killing-resisting doi: 10.1021/acsami.7b05707
dual surface modifications. Sci Rep. 2022;12(1):819. 51. Wang X, Bhadra CM, Yen Dang TH, et al. A bactericidal
doi: 10.1038/s41598-021-04746-y microfluidic device constructed using nano-textured black
43. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing silicon. RSC Adv. 2016;6(31):26300.
of functional biomaterials for tissue engineering. Curr Opin doi: 10.1039/C6RA03864F
Biotechnol. 2016;40:103-112. 52. Zhu WT, Huo FY, Cao LM, et al. Two-photon
doi: 10.1016/j.copbio.2016.03.014 polymerization 3D printing of biomimetic microstructures
44. Su R, Chen J, Zhang X, et al. 3D-printed micro/nano- for functionalizing surfaces to inhibit bacterial growth.
scaled mechanical metamaterials: fundamentals, Chem Eng J. 2025;511:161907.
technologies, progress, applications, and challenges. Small. doi: 10.1016/j.cej.2025.161907
2023;19(29):e2206391. 53. Li B, Tan H, Anastasova S, Power M, Seichepine F, Yang
doi: 10.1002/smll.202206391 GZ. A bio-inspired 3D micro-structure for graphene-based
45. Zhang Y, Su Y, Zhao Y, Wang Z, Wang C. Two-photon bacteria sensing. Biosens Bioelectron. 2019;123:77-84.
3D printing in metal-organic framework single crystals. doi: 10.1016/j.bios.2018.09.087
Small. 2022;18(18):e2200514. 54. Akbari E, Buntat Z, Afroozeh A, Zeinalinezhad A, Nikoukar
doi: 10.1002/smll.202200514 A. Escherichia coli bacteria detection by using graphene-
46. Ivanova EP, Hasan J, Webb HK, et al. Bactericidal activity of based biosensor. IET Nanobiotechnol. 2015;9(5):273-279.
black silicon. Nat Commun. 2013;4:2838. doi: 10.1049/iet-nbt.2015.0010
doi: 10.1038/ncomms3838
55. Krishnamurthi VR, Harris N, Rogers A, Zou M, Wang
47. Ivanova EP, Hasan J, Webb HK, et al. Natural bactericidal Y. Interactions of E. coli with cylindrical micro-pillars
surfaces: mechanical rupture of Pseudomonas aeruginosa of different geometric modifications. Colloids Surf B
cells by Cicada wings. Small. 2012;8(16):2489-2494. Biointerfaces. 2022;209(Pt 2):112190.
doi: 10.1002/smll.201200528 doi: 10.1016/j.colsurfb.2021.112190
Volume X Issue X (2025) 164 doi: 10.36922/IJB025150135