Page 193 - v11i4
P. 193
International Journal of Bioprinting Design of SLM-Ta artificial vertebral body
and lumbar spine: a review article. Semin Spine Surg. 12. Minagar S, Berndt CC, Wang J, Ivanova E, Wen C. A
2024;36(4):101137. review of the application of anodization for the fabrication
doi: 10.1016/j.semss.2024.101137 of nanotubes on metal implant surfaces. Acta Biomater.
2012;8(8):2875-2888.
2. Kandziora F, Schnake KJ, Klostermann CK, Haas NP. doi: 10.1016/j.actbio.2012.04.005
Vertebral body replacement in spine surgery. Unfallchirurg.
2004;107(5):354-371. 13. Jiang H. F, Aihemaiti P, Aiyiti W, Kasimu A. Study of the
doi: 10.1007/s00113-004-0777-z compression behaviours of 3D-printed PEEK/CFR-PEEK
sandwich composite structures. Virtual Phys Prototyp.
3. Kang J, Dong E, Li X, et al. Topological design and 2022;17(2):138-155.
biomechanical evaluation for 3D printed multi-segment doi: 10.1080/17452759.2021.2014636
artificial vertebral implants. Mater. Sci. Eng. C-Mater. Biol.
Appl. 2021;127:112250. 14. Zheng J, Zhao H, Ouyang Z, et al. Additively-manufactured
doi: 10.1016/j.msec.2021.112250 PEEK/HA porous scaffolds with excellent osteogenesis for
bone tissue repairing. Compos Pt B-Eng. 2022;232:109508.
4. Zhang YW, Deng L, Zhang XX, et al. Three-dimensional doi: 10.1016/j.compositesb.2021.109508
printing-assisted cervical anterior bilateral pedicle screw
fixation of artificial vertebral body for cervical tuberculosis. 15. Li S, Li G, Hu J, et al. Porous polyetheretherketone-
World Neurosurg. 2019;127:25-30. hydroxyapatite composite: a candidate material for
doi: 10.1016/j.wneu.2019.03.238 orthopedic implant. Compos Commun. 2021;28:100908.
doi: 10.1016/j.coco.2021.100908
5. Perez Roman RJ, Boddu JV, Bashti M, et al. The use of
carbon fiber-reinforced instrumentation in patients with 16. Aufa AN, Hassan MZ, Ismail Z. Recent advances in Ti-6Al-
spinal oncologic tumors: a systematic review of literature 4V additively manufactured by selective laser melting for
and future directions. World Neurosurg. 2023;173:13-22. biomedical implants: prospect development. J Alloy Compd.
doi: 10.1016/j.wneu.2023.01.090 2022;896:163072.
doi: 10.1016/j.jallcom.2021.163072
6. Chen G, Yin M, Liu W, et al. A novel height-adjustable
nano-hydroxyapatite/polyamide-66 vertebral body 17. Depboylu FN, Yasa E, Poyraz O, Minguella-Canela J,
Korkusuz F, Lopez MAD. Titanium based bone implants
for reconstruction of thoracolumbar structural
stability after spinal tumor resection. World Neurosurg. production using laser powder bed fusion technology.
2019;122:e206-e214. J Mater Res Technol. 2022;17:1408-1426.
doi: 10.1016/j.wneu.2018.09.213 doi: 10.1016/j.jmrt.2022.01.087
18. Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized
7. Kong F, Nie Z, Liu Z, Hou S, Ji J. Developments of nano- 3D printed bone scaffolds: a review. Acta Biomater.
TiO incorporated hydroxyapatite/PEEK composite strut 2023;156:110-124
2
for cervical reconstruction and interbody fusion after doi: 10.1016/j.actbio.2022.04.014
corpectomy with anterior plate fixation. J Photochem
Photobiol B-Biol. 2018;187:120-125. 19. Wu Y, Feng P, Kong Q, et al. Treatment of lumbosacral
doi: 10.1016/j.jphotobiol.2018.07.016 tuberculosis with significant vertebral body loss using
single-stage posterior surgical management with a structural
8. Abd-Elaziem W, Darwish MA, Hamada A, Daoush WM. autograft combined with a titanium mesh cage. World
Titanium-based alloys and composites for orthopedic Neurosurg. 2021;148:e10-e16.
implants applications: a comprehensive review. Mater. Des. doi: 10.1016/j.wneu.2020.11.104
2024;241:112850.
doi: 10.1016/j.matdes.2024.112850 20. Zhang HQ, Li M, Wang YX, et al. Minimum 5-year follow-
up outcomes for comparison between titanium mesh cage
9. Kurtz SM, Devine JN. PEEK biomaterials in trauma, and allogeneic bone graft to reconstruct anterior column
orthopedic, and spinal implants. Biomaterials. through posterior approach for the surgical treatment of
2007;28(32):4845-4869. thoracolumbar spinal tuberculosis with kyphosis. World
doi: 10.1016/j.biomaterials.2007.07.013 Neurosurg. 2019;127:e407-e415.
10. Ma H, Suonan A, Zhou J, et al. PEEK (Polyether-ether- doi: 10.1016/j.wneu.2019.03.139
ketone) and its composite materials in orthopedic 21. Jang J. W, Lee J. K, Lee J. H, Hur H, Kim T. W, Kim S. H.
implantation. Arab J Chem. 2021;14(3):102977. Effect of posterior subsidence on cervical alignment after
doi: 10.1016/j.arabjc.2020.102977 anterior cervical corpectomy and reconstruction using
11. Liu C, Xu M, Wang Y, et al. Exploring the potential titanium mesh cages in degenerative cervical disease. J Clin
of hydroxyapatite-based materials in biomedicine: Neurosci. 2014;21(10):1779-1785.
a comprehensive review. Mater Sci Eng R-Rep. doi: 10.1016/j.jocn.2014.02.016
2024;161:100870. 22. Bencharit S, Byrd WC, Altarawneh S, et al. Development
doi: 10.1016/j.mser.2024.100870 and applications of porous tantalum trabecular metal-
Volume 11 Issue 4 (2025) 185 doi: 10.36922/IJB025150133