Page 193 - v11i4
P. 193

International Journal of Bioprinting                                Design of SLM-Ta artificial vertebral body




               and lumbar spine: a review article.  Semin Spine Surg.   12.  Minagar S, Berndt CC, Wang J, Ivanova E, Wen C. A
               2024;36(4):101137.                                 review of the application of anodization for the fabrication
               doi:  10.1016/j.semss.2024.101137                  of nanotubes on metal implant surfaces.  Acta Biomater.
                                                                  2012;8(8):2875-2888.
            2.   Kandziora F, Schnake KJ, Klostermann CK, Haas NP.      doi: 10.1016/j.actbio.2012.04.005
               Vertebral body replacement in spine surgery. Unfallchirurg.
               2004;107(5):354-371.                            13.  Jiang H. F, Aihemaiti P, Aiyiti W, Kasimu A. Study of the
               doi: 10.1007/s00113-004-0777-z                     compression behaviours of 3D-printed PEEK/CFR-PEEK
                                                                  sandwich  composite  structures.  Virtual Phys Prototyp.
            3.   Kang J, Dong E, Li X, et al. Topological design and   2022;17(2):138-155.
               biomechanical evaluation for 3D printed multi-segment      doi: 10.1080/17452759.2021.2014636
               artificial vertebral implants. Mater. Sci. Eng. C-Mater. Biol.
               Appl. 2021;127:112250.                          14.  Zheng J, Zhao H, Ouyang Z, et al. Additively-manufactured
               doi: 10.1016/j.msec.2021.112250                    PEEK/HA porous scaffolds with excellent osteogenesis for
                                                                  bone tissue repairing. Compos Pt B-Eng. 2022;232:109508.
            4.   Zhang YW, Deng L, Zhang XX, et al. Three-dimensional      doi: 10.1016/j.compositesb.2021.109508
               printing-assisted cervical anterior bilateral pedicle screw
               fixation of artificial vertebral body for cervical tuberculosis.   15.  Li S, Li G, Hu J, et al. Porous polyetheretherketone-
               World Neurosurg. 2019;127:25-30.                   hydroxyapatite composite: a candidate material for
               doi: 10.1016/j.wneu.2019.03.238                    orthopedic implant. Compos Commun. 2021;28:100908.
                                                                  doi: 10.1016/j.coco.2021.100908
            5.   Perez Roman RJ, Boddu JV, Bashti M, et al. The use of
               carbon fiber-reinforced instrumentation in patients with   16.  Aufa AN, Hassan MZ, Ismail Z. Recent advances in Ti-6Al-
               spinal  oncologic  tumors:  a  systematic  review  of  literature   4V  additively  manufactured  by  selective  laser  melting  for
               and future directions. World Neurosurg. 2023;173:13-22.  biomedical implants: prospect development. J Alloy Compd.
               doi: 10.1016/j.wneu.2023.01.090                    2022;896:163072.
                                                                  doi: 10.1016/j.jallcom.2021.163072
            6.   Chen  G,  Yin  M,  Liu  W,  et  al.  A  novel  height-adjustable
               nano-hydroxyapatite/polyamide-66  vertebral  body  17.  Depboylu  FN,  Yasa  E,  Poyraz  O,  Minguella-Canela  J,
                                                                  Korkusuz F, Lopez MAD. Titanium based bone implants
               for  reconstruction  of  thoracolumbar  structural
               stability after spinal tumor resection.  World Neurosurg.   production using laser powder bed fusion technology.
               2019;122:e206-e214.                                J Mater Res Technol. 2022;17:1408-1426.
               doi: 10.1016/j.wneu.2018.09.213                    doi: 10.1016/j.jmrt.2022.01.087
                                                               18.  Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized
            7.   Kong F, Nie Z, Liu Z, Hou S, Ji J. Developments of nano-  3D printed bone scaffolds: a review.  Acta Biomater.
               TiO  incorporated hydroxyapatite/PEEK composite strut   2023;156:110-124
                  2
               for cervical reconstruction and interbody fusion after      doi: 10.1016/j.actbio.2022.04.014
               corpectomy with anterior plate fixation.  J  Photochem
               Photobiol B-Biol. 2018;187:120-125.             19.  Wu Y, Feng P, Kong Q, et al. Treatment of lumbosacral
               doi: 10.1016/j.jphotobiol.2018.07.016              tuberculosis with significant vertebral body loss using
                                                                  single-stage posterior surgical management with a structural
            8.   Abd-Elaziem W, Darwish MA, Hamada A, Daoush WM.   autograft combined with a titanium mesh cage.  World
               Titanium-based alloys and composites for orthopedic   Neurosurg. 2021;148:e10-e16.
               implants applications: a comprehensive review. Mater. Des.      doi: 10.1016/j.wneu.2020.11.104
               2024;241:112850.
               doi: 10.1016/j.matdes.2024.112850               20.  Zhang HQ, Li M, Wang YX, et al. Minimum 5-year follow-
                                                                  up outcomes for comparison between titanium mesh cage
            9.   Kurtz  SM,  Devine  JN.  PEEK  biomaterials  in  trauma,   and  allogeneic  bone  graft  to  reconstruct  anterior  column
               orthopedic,  and  spinal  implants.  Biomaterials.   through  posterior  approach  for  the  surgical  treatment  of
               2007;28(32):4845-4869.                             thoracolumbar spinal tuberculosis with kyphosis.  World
               doi: 10.1016/j.biomaterials.2007.07.013            Neurosurg. 2019;127:e407-e415.
            10.  Ma H, Suonan A, Zhou J, et al. PEEK (Polyether-ether-     doi: 10.1016/j.wneu.2019.03.139
               ketone)  and  its  composite  materials  in  orthopedic   21.  Jang J. W, Lee J. K, Lee J. H, Hur H, Kim T. W, Kim S. H.
               implantation. Arab J Chem. 2021;14(3):102977.      Effect of posterior subsidence on cervical alignment after
               doi: 10.1016/j.arabjc.2020.102977                  anterior cervical corpectomy and reconstruction using
            11.  Liu C, Xu M, Wang Y, et al. Exploring the potential   titanium mesh cages in degenerative cervical disease. J Clin
               of hydroxyapatite-based materials in biomedicine:   Neurosci. 2014;21(10):1779-1785.
               a comprehensive review.  Mater Sci Eng R-Rep.      doi: 10.1016/j.jocn.2014.02.016
               2024;161:100870.                                22.  Bencharit  S,  Byrd  WC,  Altarawneh  S,  et al.  Development
               doi: 10.1016/j.mser.2024.100870                    and applications of porous tantalum trabecular metal-

            Volume 11 Issue 4 (2025)                       185                            doi: 10.36922/IJB025150133
   188   189   190   191   192   193   194   195   196   197   198