Page 195 - v11i4
P. 195

International Journal of Bioprinting                                Design of SLM-Ta artificial vertebral body




            44.  Peng  W,  Cheng  K,  Liu  Y,  et  al.  Biomechanical  and   55.  Regassa Hunde B, Debebe Woldeyohannes A. Future
               mechanostat analysis of a titanium layered porous implant   prospects of computer-aided design (CAD) – a review
               for mandibular reconstruction: the effect of the topology   from the perspective of artificial intelligence (AI), extended
               optimization design.  Mater Sci Eng C-Mater Biol Appl.   reality, and 3D printing. Results Eng. 2022;14:100478.
               2021;124:112056.                                   doi: 10.1016/j.rineng.2022.100478
               doi: 10.1016/j.msec.2021.112056                 56.  Benady A,  Meyer  SJ,  Golden  E, Dadia  S, Katarivas  Levy
            45.  Smit T, Aage N, Haschtmann D, Ferguson SJ, Helgason   G. Patient-specific Ti-6Al-4V lattice implants for critical-
               B. Anatomically and mechanically conforming patient-  sized load-bearing bone defects reconstruction. Mater Des.
               specific spinal fusion cages designed by full-scale   2023;226:111605.
               topology optimization. J Mech Behav Biomed Mater. 2024;      doi: 10.1016/j.matdes.2023.111605
               159:106695.                                     57.  Moscol-Albañil I, Solórzano-Requejo W, Rodriguez C,
               doi: 10.1016/j.jmbbm.2024.106695                   Ojeda C, Díaz Lantada A. Innovative AI-driven design
            46.  Gao H, Jin X, Yang J, et al. Porous structure and compressive   of patient-specific short femoral stems in primary hip
               failure mechanism of additively manufactured cubic-lattice   arthroplasty. Mater Des. 2024;240:112868.
               tantalum scaffolds. Mater Today Adv. 2021;12:100183.     doi: 10.1016/j.matdes.2024.112868
               doi: 10.1016/j.mtadv.2021.100183                58.  Zhang T, Liu F, Chen J, et al. Dual-graded lattice with
            47.  du Plessis A, Razavi SMJ, Benedetti M, et al. Properties and   mechanical bionics to enhance fatigue performance.  Int J
               applications of additively manufactured metallic cellular   Mech Sci. 2024;279:109474.
               materials: a review. Prog Mater Sci. 2022;125:100918.     doi: 10.1016/j.ijmecsci.2024.109474
               doi: 10.1016/j.pmatsci.2021.100918              59.  Wang B, Liu M, Ke W, Hua W, Zeng X, Yang C. Finite element
            48.  Wang J,  Ni X,  Sun Q,  et al.  Additively manufactured   analysis of additive manufactured porous peek artificial
               trabecular porous tantalum: effects of annealing temperature   vertebral bodies in lumbar total en bloc spondylectomy.
               and oxygen content on mechanical properties. J Mater Res   Spine J. 2025;25(5):1042-1049.
               Technol. 2025;35:4055-4070.                        doi: 10.1016/j.spinee.2024.10.026
               doi: 10.1016/j.jmrt.2025.02.030                 60.  Zhang H, Guo Z, Zhang Z, Wu G, Sang L. Biomimetic design
                                                                  and fabrication of PEEK and PEEK/CF cage with minimal
            49.  Qin F, Chen L, Zhou G, Shi Q, Liu B, Liu X. Improved   surface structures by fused filament fabrication. J Mater Res
               compressive  strength  of  laser  powder  bed  fused  porous   Technol. 2023;26:5001-5015.
               tantalum by hot isostatic pressing.  Addit Manuf.      doi: 10.1016/j.jmrt.2023.08.236
               2025;102:104729.
               doi: 10.1016/j.addma.2025.104729                61.  Hu B, Wang L, Song Y, et al. A comparison of long-term
                                                                  outcomes  of  nanohydroxyapatite/polyamide-66  cage  and
            50.  Liu L, Yi B, Wang T, Li Z, Zhang J, Yoon GH. Investigation on   titanium mesh cage in anterior cervical corpectomy and
               numerical analysis and mechanics experiments for topology   fusion: a clinical follow-up study of least 8 years. Clin Neurol
               optimization of functionally graded lattice structure. Addit   Neurosurg. 2019;176:25-29.
               Manuf. 2021;47:102275.                             doi: 10.1016/j.clineuro.2018.11.015
               doi: 10.1016/j.addma.2021.102275
                                                               62.  Chen Y, Chen D, Guo Y, et al. Subsidence of titanium
            51.  Ahmadi SM, Campoli G, Yavari SA, et al. Mechanical   mesh cage: a study based on 300 cases.  Clin Spine Surg.
               behavior of regular open-cell porous biomaterials made   2008;21(7):489-492.
               of diamond lattice unit cells. J Mech Behav Biomed Mater.      doi: 10.1097/BSD.0b013e318158de22
               2014;34:106-115.
               doi: 10.1016/j.jmbbm.2014.02.003                63.  Lostado Lorza R, Somovilla Gomez F, Corral Bobadilla
                                                                  M, et al.  Comparative analysis of healthy and cam-
            52.  Gibson LJ, Ashby MF, eds.  Cellular Solids: Structure and   type femoroacetabular impingement (FAI) human hip
               Properties. Cambridge: Cambridge University Press; 1999.  joints using the finite element method.  Appl Sci-Basel.
            53.  Zhang YT, Aiyiti  W, Du S,  Jia R, Jiang  HF. Design  and   2021;11(23).
               mechanical  behaviours  of  a  novel  tantalum  lattice      doi: 10.3390/app112311101
               structure fabricated by SLM.  Virtual  Phys  Prototyp.   64.  McCartney W, MacDonald B, Ober CA, Lostado-Lorza R,
               2023;18(1):e2192702.                               Gómez FS. Pelvic modelling and the comparison between
               doi: 10.1080/17452759.2023.2192702                 plate position for double pelvic osteotomy  using artificial
            54.  Ataee A, Li Y, Fraser D, Song G, Wen C. Anisotropic Ti-  cancellous bone and finite element analysis. BMC Vet Res.
               6Al-4V  gyroid  scaffolds  manufactured  by  electron  beam   2018;14(1):100.
               melting (EBM) for bone implant applications.  Mater Des.      doi: 10.1186/s12917-018-1416-1
               2018;137:345-354.                               65.  Gómez FS, Lorza RL, Bobadilla MC, García RE. Improving
               doi: 10.1016/j.matdes.2017.10.040                  the process of adjusting the parameters of finite element


            Volume 11 Issue 4 (2025)                       187                            doi: 10.36922/IJB025150133
   190   191   192   193   194   195   196   197   198   199   200