Page 195 - v11i4
P. 195
International Journal of Bioprinting Design of SLM-Ta artificial vertebral body
44. Peng W, Cheng K, Liu Y, et al. Biomechanical and 55. Regassa Hunde B, Debebe Woldeyohannes A. Future
mechanostat analysis of a titanium layered porous implant prospects of computer-aided design (CAD) – a review
for mandibular reconstruction: the effect of the topology from the perspective of artificial intelligence (AI), extended
optimization design. Mater Sci Eng C-Mater Biol Appl. reality, and 3D printing. Results Eng. 2022;14:100478.
2021;124:112056. doi: 10.1016/j.rineng.2022.100478
doi: 10.1016/j.msec.2021.112056 56. Benady A, Meyer SJ, Golden E, Dadia S, Katarivas Levy
45. Smit T, Aage N, Haschtmann D, Ferguson SJ, Helgason G. Patient-specific Ti-6Al-4V lattice implants for critical-
B. Anatomically and mechanically conforming patient- sized load-bearing bone defects reconstruction. Mater Des.
specific spinal fusion cages designed by full-scale 2023;226:111605.
topology optimization. J Mech Behav Biomed Mater. 2024; doi: 10.1016/j.matdes.2023.111605
159:106695. 57. Moscol-Albañil I, Solórzano-Requejo W, Rodriguez C,
doi: 10.1016/j.jmbbm.2024.106695 Ojeda C, Díaz Lantada A. Innovative AI-driven design
46. Gao H, Jin X, Yang J, et al. Porous structure and compressive of patient-specific short femoral stems in primary hip
failure mechanism of additively manufactured cubic-lattice arthroplasty. Mater Des. 2024;240:112868.
tantalum scaffolds. Mater Today Adv. 2021;12:100183. doi: 10.1016/j.matdes.2024.112868
doi: 10.1016/j.mtadv.2021.100183 58. Zhang T, Liu F, Chen J, et al. Dual-graded lattice with
47. du Plessis A, Razavi SMJ, Benedetti M, et al. Properties and mechanical bionics to enhance fatigue performance. Int J
applications of additively manufactured metallic cellular Mech Sci. 2024;279:109474.
materials: a review. Prog Mater Sci. 2022;125:100918. doi: 10.1016/j.ijmecsci.2024.109474
doi: 10.1016/j.pmatsci.2021.100918 59. Wang B, Liu M, Ke W, Hua W, Zeng X, Yang C. Finite element
48. Wang J, Ni X, Sun Q, et al. Additively manufactured analysis of additive manufactured porous peek artificial
trabecular porous tantalum: effects of annealing temperature vertebral bodies in lumbar total en bloc spondylectomy.
and oxygen content on mechanical properties. J Mater Res Spine J. 2025;25(5):1042-1049.
Technol. 2025;35:4055-4070. doi: 10.1016/j.spinee.2024.10.026
doi: 10.1016/j.jmrt.2025.02.030 60. Zhang H, Guo Z, Zhang Z, Wu G, Sang L. Biomimetic design
and fabrication of PEEK and PEEK/CF cage with minimal
49. Qin F, Chen L, Zhou G, Shi Q, Liu B, Liu X. Improved surface structures by fused filament fabrication. J Mater Res
compressive strength of laser powder bed fused porous Technol. 2023;26:5001-5015.
tantalum by hot isostatic pressing. Addit Manuf. doi: 10.1016/j.jmrt.2023.08.236
2025;102:104729.
doi: 10.1016/j.addma.2025.104729 61. Hu B, Wang L, Song Y, et al. A comparison of long-term
outcomes of nanohydroxyapatite/polyamide-66 cage and
50. Liu L, Yi B, Wang T, Li Z, Zhang J, Yoon GH. Investigation on titanium mesh cage in anterior cervical corpectomy and
numerical analysis and mechanics experiments for topology fusion: a clinical follow-up study of least 8 years. Clin Neurol
optimization of functionally graded lattice structure. Addit Neurosurg. 2019;176:25-29.
Manuf. 2021;47:102275. doi: 10.1016/j.clineuro.2018.11.015
doi: 10.1016/j.addma.2021.102275
62. Chen Y, Chen D, Guo Y, et al. Subsidence of titanium
51. Ahmadi SM, Campoli G, Yavari SA, et al. Mechanical mesh cage: a study based on 300 cases. Clin Spine Surg.
behavior of regular open-cell porous biomaterials made 2008;21(7):489-492.
of diamond lattice unit cells. J Mech Behav Biomed Mater. doi: 10.1097/BSD.0b013e318158de22
2014;34:106-115.
doi: 10.1016/j.jmbbm.2014.02.003 63. Lostado Lorza R, Somovilla Gomez F, Corral Bobadilla
M, et al. Comparative analysis of healthy and cam-
52. Gibson LJ, Ashby MF, eds. Cellular Solids: Structure and type femoroacetabular impingement (FAI) human hip
Properties. Cambridge: Cambridge University Press; 1999. joints using the finite element method. Appl Sci-Basel.
53. Zhang YT, Aiyiti W, Du S, Jia R, Jiang HF. Design and 2021;11(23).
mechanical behaviours of a novel tantalum lattice doi: 10.3390/app112311101
structure fabricated by SLM. Virtual Phys Prototyp. 64. McCartney W, MacDonald B, Ober CA, Lostado-Lorza R,
2023;18(1):e2192702. Gómez FS. Pelvic modelling and the comparison between
doi: 10.1080/17452759.2023.2192702 plate position for double pelvic osteotomy using artificial
54. Ataee A, Li Y, Fraser D, Song G, Wen C. Anisotropic Ti- cancellous bone and finite element analysis. BMC Vet Res.
6Al-4V gyroid scaffolds manufactured by electron beam 2018;14(1):100.
melting (EBM) for bone implant applications. Mater Des. doi: 10.1186/s12917-018-1416-1
2018;137:345-354. 65. Gómez FS, Lorza RL, Bobadilla MC, García RE. Improving
doi: 10.1016/j.matdes.2017.10.040 the process of adjusting the parameters of finite element
Volume 11 Issue 4 (2025) 187 doi: 10.36922/IJB025150133