Page 194 - v11i4
P. 194

International Journal of Bioprinting                                Design of SLM-Ta artificial vertebral body




               enhanced titanium dental implants. Clin Implant Dent Relat   33.  Zhang BQ, Pei X, Zhou CC, et al. The biomimetic design and
               Res. 2014;16(6):817-826.                           3D printing of customized mechanical properties porous
               doi: 10.1111/cid.12059                             Ti6Al4V scaffold for load-bearing bone reconstruction.
            23.  Piglionico S, Bousquet J, Fatima N, Renaud M, Collart-  Mater Des. 2018;152:30-39.
               Dutilleul PY, Bousquet P. Porous  tantalum vs. titanium      doi: 10.1016/j.matdes.2018.04.065
               implants: enhanced mineralized matrix formation after   34.  Lu HZ, Ma HW, Luo X, et al. Microstructure, shape memory
               stem cells proliferation and differentiation.  J Clin Med.   properties, and invitro biocompatibility of porous NiTi
               2020;9(11):3657.                                   scaffolds fabricated via selective laser melting. J Mater Res
               doi: 10.3390/jcm9113657                            Technol. 2021;15:6797-6812.
            24.  Li X, Wang L, Yu XM, et al. Tantalum coating on porous      doi: 10.1016/j.jmrt.2021.11.112
               Ti6Al4V  scaffold using chemical  vapor  deposition  and   35.  Deng FY, Liu LL, Li Z, Liu JC. 3D printed Ti6Al4V bone
               preliminary biological evaluation.  Mater Sci Eng C-Mater   scaffolds with different pore structure effects on bone
               Biol Appl. 2013;33(5):2987-2994.                   ingrowth. J Biol Eng. 2021;15(1):4.
               doi: 10.1016/j.msec.2013.03.027                    doi: 10.1186/s13036-021-00255-8
            25.  Wang X, Ning B, Pei X. Tantalum and its derivatives   36.  Guo Z, Wang C, Du C, Sui J, Liu J. Effects of topological
               in orthopedic and dental implants: osteogenesis and   structure on antibacterial behavior and biocompatibility of
               antibacterial  properties.  Colloid Surf B-Biointerfaces.   implant. Procedia CIRP. 2020;89:126-131.
               2021;208:112055.                                   doi: 10.1016/j.procir.2019.12.003
               doi: 10.1016/j.colsurfb.2021.112055
                                                               37.  Chen J, Song C, Deng Z, et al. Functional gradient design of
            26.  Wang X, Liu W, Jiang C, et al. Research progress on the   additive manufactured gyroid tantalum porous structures:
               osteogenic properties of tantalum in the field of medical   manufacturing, mechanical  behaviors  and permeability.
               implant materials. J Mater Res Technol. 2024;30:1706-1715.  J Manuf Process. 2024;125:202-216.
               doi: 10.1016/j.jmrt.2024.03.200
                                                                  doi: 10.1016/j.jmapro.2024.07.054
            27.  Ataee A, Li Y, Brandt M, Wen C. Ultrahigh-strength   38.  Song C, Chen J, Lei H, et al. Radial gradient design enabling
               titanium gyroid scaffolds manufactured by selective laser   additively manufactured low-modulus gyroid tantalum
               melting (SLM) for bone implant applications. Acta Mater.   structures. Int J Mech Sci. 2024;262:108710.
               2018;158:354-368.                                  doi: 10.1016/j.ijmecsci.2023.108710
               doi: 10.1016/j.actamat.2018.08.005
                                                               39.  Ni X, Sun Q, Wang J, et al. Development and characterization
            28.  Zhang Y, Yang J, Wan W, et al. Evaluation of biological
               performance of 3D printed trabecular porous tantalum   of minimal surface tantalum scaffold with high strength
               spine fusion cage in large animal models. J Orthop Transl.   and superior fatigue resistance.  J Mater Res Technol.
               2025;50:185-195.                                   2025;36:1226-1239.
               doi: 10.1016/j.jot.2024.10.010                     doi: 10.1016/j.jmrt.2025.03.108
            29.  Wang X, Xu S, Zhou S, et al. Topological design and   40.  Liu J, Zou Z, Li Z, et al. A clustering-based multiscale
               additive  manufacturing  of  porous  metals  for  bone   topology optimization framework for efficient design of
               scaffolds and orthopaedic implants: a review. Biomaterials.   porous composite structures. Comput Methods Appl Mech
               2016;83:127-141.                                   Eng. 2025;439:117881.
               doi: 10.1016/j.biomaterials.2016.01.012            doi: 10.1016/j.cma.2025.117881
            30.  Chen LY, Liang SX, Liu YJ, Zhang LC. Additive   41.  Noman AA, Shaari MS, Mehboob H, Azman AH. Recent
               manufacturing of metallic lattice structures: unconstrained   advancements in additively manufactured hip implant
               design, accurate fabrication, fascinated performances, and   design using topology optimization technique. Results Eng.
               challenges. Mater Sci Eng R-Rep. 2021;146:100648.  2025;25:103932.
               doi: 10.1016/j.mser.2021.100648                    doi: 10.1016/j.rineng.2025.103932
            31.  Benedetti M, du Plessis A, Ritchie RO, Dallago M, Razavi   42.  Kök HI, Kick M, Akbas O, et al. Reduction of stress-
               SMJ, Berto F. Architected cellular materials: a review on   shielding and fatigue-resistant dental implant design
               their mechanical properties towards fatigue-tolerant design   through topology optimization and TPMS lattices. J Mech
               and fabrication. Mater Sci Eng R-Rep. 2021;144:100606.  Behav Biomed Mater. 2025;165:106923.
               doi: 10.1016/j.mser.2021.100606                    doi: 10.1016/j.jmbbm.2025.106923
            32.  Wang Z, Zhang M, Liu Z, et al. Biomimetic design strategy   43.  Xiong W, Ding X, Zhang H, et al. Topology optimization
               of complex porous structure based on 3D printing Ti-6Al-  of embracing fixator considering bone remodeling to
               4V scaffolds for enhanced osseointegration.  Mater Des.   mitigate stress  shielding  effect.  Med Eng Phys. 2024;125:
               2022;218:110721.                                   104122.
               doi: 10.1016/j.matdes.2022.110721                  doi: 10.1016/j.medengphy.2024.104122

            Volume 11 Issue 4 (2025)                       186                            doi: 10.36922/IJB025150133
   189   190   191   192   193   194   195   196   197   198   199