Page 263 - v11i4
P. 263
International Journal of Bioprinting Deep learning-based 3D digital model of fetal heart
21. Bradski G, Kaehler A. Learning OpenCV: Computer Vision deep learning on whole slide images. Nat Med.
with the OpenCV Library. Cambridge: O’Reilly; 2008. 2019;25(8):1301-1309.
doi: 10.1109/MRA.2009.933612 doi: 10.1038/s41591-019-0508-1
22. Bishop KC, Kuller JA, Boyd BK, Rhee EH, Miller S, Barker 26. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep
P. Ultrasound examination of the fetal heart. Obstet Gynecol learning in medical image analysis. Med Image Anal.
Surv. 2017;72(1):54-61.
doi: 10.1097/OGX.0000000000000394 2017;42:60-88.
doi: 10.1016/j.media.2017.07.005
23. Liu S, Wang Y, Yang X, et al. Deep learning in medical
ultrasound analysis: a review. Engineering. 2019;5(2):261-275. 27. Luijten B, Cohen R, de Bruijn FJ, et al. Adaptive ultrasound
doi: 10.1016/j.eng.2018.11.020 beamforming using deep learning. IEEE Trans Med Imaging.
2020;39(12):3967-3978.
24. Ouyang D, He B, Ghorbani A, et al. Video-based AI for
beat-to-beat assessment of cardiac function. Nature. doi: 10.1109/TMI.2020.3008537
2020;580(7802):252-256. 28. Liaw CY, Guvendiren M. Current and emerging applications
doi: 10.1038/s41586-020-2145-8 of 3D printing in medicine. Biofabrication. 2017;
25. Campanella G, Hanna MG, Geneslaw L, et al. Clinical- 9(2):024102.
grade computational pathology using weakly supervised doi: 10.1088/1758-5090/aa7279
Volume 11 Issue 4 (2025) 255 doi: 10.36922/IJB025200192