Page 262 - v11i4
P. 262

International Journal of Bioprinting                         Deep learning-based 3D digital model of fetal heart




            Consent for publication                               doi: 10.1136/bmjopen-2017-016891
            Prior to participation, all subjects provided written   9.   Hosny A, Dilley JD, Kelil T, et al. Pre-procedural fit-testing
            informed consent.  The  study  adhered  to  strict    of TAVR valves using parametric modeling and 3D printing.
            confidentiality and data protection measures to ensure the      J Cardiovasc Comput Tomogr. 2019;13(1):21-30.
                                                                  doi: 10.1016/j.jcct.2018.09.007
            privacy of participants. No additional ethical concerns or
            conflicts of interest were identified during the research.  10.  Costello JP, Olivieri LJ, Su L, et al. Incorporating three-
                                                                  dimensional  printing  into  a  simulation-based  congenital
            Availability of data                                  heart disease and critical care training curriculum for
                                                                  resident physicians. Congenit Heart Dis. 2015;10(2):185-90.
            The clinical imaging data used in this study are restricted      doi: 10.1111/chd.12238
            by ethical data protection permissions and are not available   11.  Ng  WL,  Goh  GL,  Goh  GD,  Ten  JSJ,  Yeong  WY.  Progress
            for distribution.                                     and opportunities for machine learning in materials
                                                                  and processes of additive manufacturing.  Adv Mater.
            References                                            2024;36(34):e2310006.
                                                                  doi: 10.1002/adma.202310006
            1.   Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and
               stroke statistics-2019 update: a report from the American   12.  Jin L, Zhai X, Wang K, et al. Big data, machine learning, and
               Heart Association. Circulation. 2019;139(10):e56-e528.  digital twin assisted additive manufacturing: a review. Mater
               doi: 10.1161/cir.0000000000000659                  Des. 2024;244:113086.
                                                                  doi: 10.1016/j.matdes.2024.113086
            2.   International Society  of  Ultrasound  in  Obstetrics  and
               Gynecology, Carvalho JS, Allan LD, et al. ISUOG practice   13.  Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-
               guidelines (updated): sonographic screening examination of   time object detection with region proposal networks. IEEE
               the fetal heart. Ultrasound Obstet Gynecol. 2013;41(3):348-59.  Trans Pattern Anal Mach Intell. 2017;39(6):1137-1149.
               doi: 10.1002/uog.12403                             doi: 10.1109/TPAMI.2016.2577031
                                                               14.  Bell S, Zitnick CL, Bala K, Girshick R. Inside-outside net:
            3.   Jantarasaengaram S, Vairojanavong K. Eleven fetal
               echocardiographic planes using 4-dimensional ultrasound   detecting objects in context with skip pooling and recurrent
               with spatio-temporal image correlation (STIC): a logical   neural networks. Proc CVPR IEEE. 2016:2874-2883.
               approach to fetal heart volume analysis.  Cardiovasc      doi: 10.1109/Cvpr.2016.314
               Ultrasound. 2010;8:41.                          15.  Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung
               doi: 10.1186/1476-7120-8-41                        cancer screening with three-dimensional deep learning
                                                                  on low-dose chest computed tomography.  Nat Med.
            4.   Huang J, Shi H, Chen Q, et al. Three-dimensional printed
               model  fabrication and  effectiveness  evaluation  in  fetuses   2019;25(6):954-961.
               with congenital heart disease or with a normal heart.       doi: 10.1038/s41591-019-0447-x
               J Ultrasound Med. 2021;40(1):15-28.             16.  Poplin R, Varadarajan AV, Blumer K, et al. Prediction of
               doi: 10.1002/jum.15366                             cardiovascular risk factors from retinal fundus photographs
                                                                  via deep learning. Nat Biomed Eng. 2018;2(3):158-164.
            5.   Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X. Deep
               learning in medical image registration: a review. Phys Med      doi: 10.1038/s41551-018-0195-0
               Biol. 2020;65(20):20tr01.                       17.  Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level
               doi: 10.1088/1361-6560/ab843e                      classification of skin cancer with deep neural networks.
                                                                  Nature. 2017;542(7639):115-118.
            6.   Madani A, Ong JR, Tibrewal A, Mofrad MRK. Deep
               echocardiography: data-efficient supervised and semi-     doi: 10.1038/nature21056
               supervised deep learning towards automated diagnosis of   18.  Coudray N, Ocampo PS, Sakellaropoulos  T, et al.
               cardiac disease. NPJ Digit Med. 2018;1:59.         Classification and mutation prediction from non-small cell
               doi: 10.1038/s41746-018-0065-x                     lung cancer histopathology images using deep learning. Nat
                                                                  Med. 2018;24(10):1559-1567.
            7.   Ackland DC, Robinson D, Redhead M, Lee PVS, Moskaljuk
               A,  Dimitroulis  G.  A personalized 3D-printed  prosthetic      doi: 10.1038/s41591-018-0177-5
               joint replacement for the human temporomandibular joint:   19.  Simonyan K, Zisserman A. Very deep convolutional
               from implant design to implantation. J Mech Behav Biomed   networks for large-scale image recognition. arXiv. 2015.
               Mater. 2017;69:404-411.                            doi:  10.48550/arXiv.1409.1556
               doi: 10.1016/j.jmbbm.2017.01.048
                                                               20.  Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-
            8.   Diment LE,  Thompson MS,  Bergmann  JHM.  Clinical   scale machine learning on heterogeneous distributed
               efficacy and effectiveness of 3D printing: a systematic review.   systems. arXiv. 2016.
               BMJ Open. 2017;7(12):e016891.                      doi: 10.48550/arXiv.1603.04467


            Volume 11 Issue 4 (2025)                       254                            doi: 10.36922/IJB025200192
   257   258   259   260   261   262   263   264   265   266   267