Page 262 - v11i4
P. 262
International Journal of Bioprinting Deep learning-based 3D digital model of fetal heart
Consent for publication doi: 10.1136/bmjopen-2017-016891
Prior to participation, all subjects provided written 9. Hosny A, Dilley JD, Kelil T, et al. Pre-procedural fit-testing
informed consent. The study adhered to strict of TAVR valves using parametric modeling and 3D printing.
confidentiality and data protection measures to ensure the J Cardiovasc Comput Tomogr. 2019;13(1):21-30.
doi: 10.1016/j.jcct.2018.09.007
privacy of participants. No additional ethical concerns or
conflicts of interest were identified during the research. 10. Costello JP, Olivieri LJ, Su L, et al. Incorporating three-
dimensional printing into a simulation-based congenital
Availability of data heart disease and critical care training curriculum for
resident physicians. Congenit Heart Dis. 2015;10(2):185-90.
The clinical imaging data used in this study are restricted doi: 10.1111/chd.12238
by ethical data protection permissions and are not available 11. Ng WL, Goh GL, Goh GD, Ten JSJ, Yeong WY. Progress
for distribution. and opportunities for machine learning in materials
and processes of additive manufacturing. Adv Mater.
References 2024;36(34):e2310006.
doi: 10.1002/adma.202310006
1. Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and
stroke statistics-2019 update: a report from the American 12. Jin L, Zhai X, Wang K, et al. Big data, machine learning, and
Heart Association. Circulation. 2019;139(10):e56-e528. digital twin assisted additive manufacturing: a review. Mater
doi: 10.1161/cir.0000000000000659 Des. 2024;244:113086.
doi: 10.1016/j.matdes.2024.113086
2. International Society of Ultrasound in Obstetrics and
Gynecology, Carvalho JS, Allan LD, et al. ISUOG practice 13. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-
guidelines (updated): sonographic screening examination of time object detection with region proposal networks. IEEE
the fetal heart. Ultrasound Obstet Gynecol. 2013;41(3):348-59. Trans Pattern Anal Mach Intell. 2017;39(6):1137-1149.
doi: 10.1002/uog.12403 doi: 10.1109/TPAMI.2016.2577031
14. Bell S, Zitnick CL, Bala K, Girshick R. Inside-outside net:
3. Jantarasaengaram S, Vairojanavong K. Eleven fetal
echocardiographic planes using 4-dimensional ultrasound detecting objects in context with skip pooling and recurrent
with spatio-temporal image correlation (STIC): a logical neural networks. Proc CVPR IEEE. 2016:2874-2883.
approach to fetal heart volume analysis. Cardiovasc doi: 10.1109/Cvpr.2016.314
Ultrasound. 2010;8:41. 15. Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung
doi: 10.1186/1476-7120-8-41 cancer screening with three-dimensional deep learning
on low-dose chest computed tomography. Nat Med.
4. Huang J, Shi H, Chen Q, et al. Three-dimensional printed
model fabrication and effectiveness evaluation in fetuses 2019;25(6):954-961.
with congenital heart disease or with a normal heart. doi: 10.1038/s41591-019-0447-x
J Ultrasound Med. 2021;40(1):15-28. 16. Poplin R, Varadarajan AV, Blumer K, et al. Prediction of
doi: 10.1002/jum.15366 cardiovascular risk factors from retinal fundus photographs
via deep learning. Nat Biomed Eng. 2018;2(3):158-164.
5. Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X. Deep
learning in medical image registration: a review. Phys Med doi: 10.1038/s41551-018-0195-0
Biol. 2020;65(20):20tr01. 17. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level
doi: 10.1088/1361-6560/ab843e classification of skin cancer with deep neural networks.
Nature. 2017;542(7639):115-118.
6. Madani A, Ong JR, Tibrewal A, Mofrad MRK. Deep
echocardiography: data-efficient supervised and semi- doi: 10.1038/nature21056
supervised deep learning towards automated diagnosis of 18. Coudray N, Ocampo PS, Sakellaropoulos T, et al.
cardiac disease. NPJ Digit Med. 2018;1:59. Classification and mutation prediction from non-small cell
doi: 10.1038/s41746-018-0065-x lung cancer histopathology images using deep learning. Nat
Med. 2018;24(10):1559-1567.
7. Ackland DC, Robinson D, Redhead M, Lee PVS, Moskaljuk
A, Dimitroulis G. A personalized 3D-printed prosthetic doi: 10.1038/s41591-018-0177-5
joint replacement for the human temporomandibular joint: 19. Simonyan K, Zisserman A. Very deep convolutional
from implant design to implantation. J Mech Behav Biomed networks for large-scale image recognition. arXiv. 2015.
Mater. 2017;69:404-411. doi: 10.48550/arXiv.1409.1556
doi: 10.1016/j.jmbbm.2017.01.048
20. Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-
8. Diment LE, Thompson MS, Bergmann JHM. Clinical scale machine learning on heterogeneous distributed
efficacy and effectiveness of 3D printing: a systematic review. systems. arXiv. 2016.
BMJ Open. 2017;7(12):e016891. doi: 10.48550/arXiv.1603.04467
Volume 11 Issue 4 (2025) 254 doi: 10.36922/IJB025200192