Page 303 - v11i4
P. 303
International Journal of Bioprinting Dual tuning of 3D-printed SilMA hydrogel
regeneration of osteochondral defect. Adv Funct Mater. 22. Ying G, Jiang N, Parra-Cantu C, Tang G, Zhang J, Zhang
2023;33(43):2304829 . YS. Bioprinted injectable hierarchically porous gelatin
doi: 10.1002/adfm.202304829 methacryloyl hydrogel constructs with shape-memory
12. Annabi N, Nichol JW, Zhong X, et al. Controlling the properties. Adv Funct Mater. 2020;30(46):2003740.
porosity and microarchitecture of hydrogels for tissue doi: 10.1002/adfm.202003740
engineering. Tissue Eng Part B Rev. 2010;16(4):371-383. 23. Wang C, Su Y, Xie J. Advances in electrospun nanofibers:
doi: 10.1089/ten.TEB.2009.0639 versatile materials and diverse biomedical applications. Acc
13. Santos MI, da Silva LCE, Bomediano MP, Catori DM, Mater Res. 2024;5(8):987-999.
Gonçalves MC, de Oliveira MG. 3D printed nitric oxide- doi: 10.1021/accountsmr.4c00145
releasing poly(acrylic acid)/F127/cellulose nanocrystal 24. Huang T, Zeng Y, Li C, Zhou Z, Xu J, Wang K. Application
hydrogels. Soft Matter. 2021;17(26):6352-6361. and development of electrospun nanofiber scaffolds
doi: 10.1039/d1sm00163a for bone tissue engineering. ACS Biomater Sci Eng.
14. Shahbazi M, Jäger H, Huc-Mathis D, et al. Depletion 2024;10(7):4114-4144.
flocculation of high internal phase pickering emulsion inks: doi: 10.1021/acsbiomaterials.4c00028
a colloidal engineering approach to develop 3D printed 25. Long M, Wu G, Tao F, Ma S, Dong X, Deng H. Nanofibrous
porous scaffolds with tunable bioactive delivery. ACS Appl textured silk aerogel with 3D channel arrays and adjustable
Mater Interfaces. 2024;16(33):43430-43450. mechanical properties for bone tissue regeneration. Int J Biol
doi: 10.1021/acsami.4c11035 Macromol. 2024;278(Pt 2):134372.
15. Li K, Shi Z, Meng Z. Study on the foam properties of doi: 10.1016/j.ijbiomac.2024.134372
peanut oil body (POB)-based oil-in-water-in-oil (O/W/O) 26. Song Y, Shimanovich U, Michaels TCT, et al. Fabrication of
foamed emulsion gel: the key role played by the interface fibrillosomes from droplets stabilized by protein nanofibrils
between the water phase and the outer oil phase. Food Chem. at all-aqueous interfaces. Nat Commun. 2016;7(1):12934.
2025;464:141663. doi: 10.1038/ncomms12934
doi: 10.1016/j.foodchem.2024.141663
27. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML,
16. Frith WJ. Mixed biopolymer aqueous solutions-phase Kaplan DL. Materials fabrication from Bombyx mori silk
behaviour and rheology. Adv Colloid Interface Sci. fibroin. Nat Protoc. 2011;6(10):1612-1631.
2010;161(1-2):48-60. doi: 10.1038/nprot.2011.379
doi: 10.1016/j.cis.2009.08.001
28. Ma X, Wu G, Dai F, et al. Chitosan/polydopamine layer by
17. Ying GL, Jiang N, Maharjan S, Yin YX, Chai RR, Zhang YS. layer self-assembled silk fibroin nanofibers for biomedical
Aqueous two-phase emulsion bioink-enabled 3D bioprinting applications. Carbohydr Polym. 2021;251:117058.
of porous hydrogels. Adv Mater. 2018;30(50):1805460. doi: 10.1016/j.carbpol.2020.117058
doi: 10.1002/adma.201805460
29. Nicolai T, Murray B. Particle stabilized water in water
18. Wang L-S, Du C, Toh WS, Wan ACA, Gao SJ, Kurisawa emulsions. Food Hydrocoll. 2017;68:157-163.
M. Modulation of chondrocyte functions and stiffness- doi: 10.1016/j.foodhyd.2016.08.036
dependent cartilage repair using an injectable enzymatically
crosslinked hydrogel with tunable mechanical properties. 30. Sawyer Mt, Eixenberger J, Nielson O, Manzi J, Francis
Biomaterials. 2014;35(7):2207-2217. C, Estrada D. Correlative imaging of three-dimensional
doi: 10.1016/j.biomaterials.2013.11.070 cell culture on opaque bioscaffolds for tissue engineering
applications. ACS Appl Biomater. 2023;6(9):3717-3725.
19. Zhou Y, Liang K, Zhao S, Zhan C, Li J, Xiao P. doi: 10.1021/acsabm.3c00408
Photopolymerized maleilated chitosan/methacrylated
silk fibroin micro/nanocomposite hydrogels as potential 31. Yoon J, Han H, Jan J. Nanomaterials-incorporated hydrogels
scaffolds for cartilage tissue engineering. Int J Biol Macromol. for 3D bioprinting technology. Nano Converg. 2023;10(1):52.
2018;108:383-390. doi: 10.1186/s40580-023-00402-5
doi: 10.1016/j.ijbiomac.2017.12.032 32. Chang A, Babhadiashar N, Barrett-Catton E, Asuri P. Role
20. Kim SH, Yeon YK, Lee JM, Chao JR, Lee Y, Park CH. of nanoparticle-polymer interactions on the development
Precisely printable and biocompatible silk fibroin bioink of double-network hydrogel nanocomposites with high
for digital light processing 3D printing. Nat Commun. mechanical strength. Polymers. 2020;12(2):470.
2018;9(1):1620. doi: 10.3390/polym12020470
doi: 10.1038/s41467-018-03759-y 33. Cheng Y, Cheng G, Xie C, Yin C, Dong X, Li Z. Biomimetic
21. Zhang Q, Lu H, Kawazoe N, Chen G. Pore size effect of silk fibroin hydrogels strengthened by silica nanoparticles
collagen scaffolds on cartilage regeneration. Acta Biomater. distributed nanofibers facilitate bone repair. Adv Healthc
2014;10(5):2005-2013. Mater. 2021;10(9):2001646.
doi: 10.1016/j.actbio.2013.12.042 doi: 10.1002/adhm.202001646
Volume 11 Issue 4 (2025) 295 doi: 10.36922/IJB025140118