Page 303 - v11i4
P. 303

International Journal of Bioprinting                                Dual tuning of 3D-printed SilMA hydrogel




               regeneration of osteochondral defect.  Adv Funct Mater.   22.  Ying G, Jiang N, Parra-Cantu C, Tang G, Zhang J, Zhang
               2023;33(43):2304829 .                              YS.  Bioprinted  injectable  hierarchically  porous  gelatin
               doi: 10.1002/adfm.202304829                        methacryloyl hydrogel constructs with shape-memory
            12.  Annabi N, Nichol JW, Zhong X, et al. Controlling the   properties. Adv Funct Mater. 2020;30(46):2003740.
               porosity and microarchitecture of hydrogels for tissue      doi: 10.1002/adfm.202003740
               engineering. Tissue Eng Part B Rev. 2010;16(4):371-383.  23.  Wang C, Su Y, Xie J. Advances in electrospun nanofibers:
               doi: 10.1089/ten.TEB.2009.0639                     versatile materials and diverse biomedical applications. Acc
            13.  Santos  MI,  da  Silva  LCE,  Bomediano  MP,  Catori  DM,   Mater Res. 2024;5(8):987-999.
               Gonçalves MC, de Oliveira MG. 3D printed nitric oxide-     doi: 10.1021/accountsmr.4c00145
               releasing poly(acrylic acid)/F127/cellulose nanocrystal   24.  Huang T, Zeng Y, Li C, Zhou Z, Xu J, Wang K. Application
               hydrogels. Soft Matter. 2021;17(26):6352-6361.     and development of electrospun nanofiber scaffolds
               doi: 10.1039/d1sm00163a                            for bone tissue engineering.  ACS Biomater Sci Eng.
            14.  Shahbazi M, Jäger H, Huc-Mathis D, et al. Depletion   2024;10(7):4114-4144.
               flocculation of high internal phase pickering emulsion inks:      doi: 10.1021/acsbiomaterials.4c00028
               a colloidal engineering approach to develop 3D printed   25.  Long M, Wu G, Tao F, Ma S, Dong X, Deng H. Nanofibrous
               porous scaffolds with tunable bioactive delivery. ACS Appl   textured silk aerogel with 3D channel arrays and adjustable
               Mater Interfaces. 2024;16(33):43430-43450.         mechanical properties for bone tissue regeneration. Int J Biol
               doi: 10.1021/acsami.4c11035                        Macromol. 2024;278(Pt 2):134372.
            15.  Li K, Shi Z, Meng Z. Study on the foam properties of      doi: 10.1016/j.ijbiomac.2024.134372
               peanut oil body (POB)-based oil-in-water-in-oil (O/W/O)   26.  Song Y, Shimanovich U, Michaels TCT, et al. Fabrication of
               foamed emulsion gel: the key role played by the interface   fibrillosomes from droplets stabilized by protein nanofibrils
               between the water phase and the outer oil phase. Food Chem.   at all-aqueous interfaces. Nat Commun. 2016;7(1):12934.
               2025;464:141663.                                   doi: 10.1038/ncomms12934
               doi: 10.1016/j.foodchem.2024.141663
                                                               27.  Rockwood DN, Preda RC,  Yücel T,  Wang X,  Lovett ML,
            16.  Frith WJ. Mixed biopolymer aqueous solutions-phase   Kaplan DL. Materials fabrication from  Bombyx mori silk
               behaviour and rheology.  Adv Colloid Interface Sci.   fibroin. Nat Protoc. 2011;6(10):1612-1631.
               2010;161(1-2):48-60.                               doi: 10.1038/nprot.2011.379
               doi: 10.1016/j.cis.2009.08.001
                                                               28.  Ma X, Wu G, Dai F, et al. Chitosan/polydopamine layer by
            17.  Ying GL, Jiang N, Maharjan S, Yin YX, Chai RR, Zhang YS.   layer self-assembled silk fibroin nanofibers for biomedical
               Aqueous two-phase emulsion bioink-enabled 3D bioprinting   applications. Carbohydr Polym. 2021;251:117058.
               of porous hydrogels. Adv Mater. 2018;30(50):1805460.     doi: 10.1016/j.carbpol.2020.117058
               doi: 10.1002/adma.201805460
                                                               29.  Nicolai T, Murray B. Particle stabilized water in water
            18.  Wang L-S, Du C, Toh WS, Wan ACA, Gao SJ, Kurisawa   emulsions. Food Hydrocoll. 2017;68:157-163.
               M. Modulation of chondrocyte functions and stiffness-     doi: 10.1016/j.foodhyd.2016.08.036
               dependent cartilage repair using an injectable enzymatically
               crosslinked hydrogel  with tunable mechanical properties.   30.  Sawyer Mt, Eixenberger J, Nielson O, Manzi J, Francis
               Biomaterials. 2014;35(7):2207-2217.                C, Estrada D. Correlative imaging of three-dimensional
               doi: 10.1016/j.biomaterials.2013.11.070            cell culture on opaque bioscaffolds for tissue engineering
                                                                  applications. ACS Appl Biomater. 2023;6(9):3717-3725.
            19.  Zhou Y, Liang K, Zhao S, Zhan C, Li J, Xiao P.      doi: 10.1021/acsabm.3c00408
               Photopolymerized  maleilated  chitosan/methacrylated
               silk fibroin micro/nanocomposite hydrogels as potential   31.  Yoon J, Han H, Jan J. Nanomaterials-incorporated hydrogels
               scaffolds for cartilage tissue engineering. Int J Biol Macromol.   for 3D bioprinting technology. Nano Converg. 2023;10(1):52.
               2018;108:383-390.                                  doi: 10.1186/s40580-023-00402-5
               doi: 10.1016/j.ijbiomac.2017.12.032             32.  Chang A, Babhadiashar N, Barrett-Catton E, Asuri P. Role
            20.  Kim SH, Yeon YK, Lee JM, Chao JR, Lee Y, Park CH.   of nanoparticle-polymer interactions on the development
               Precisely printable and biocompatible silk fibroin bioink   of double-network hydrogel nanocomposites with high
               for digital light processing 3D printing.  Nat Commun.   mechanical strength. Polymers. 2020;12(2):470.
               2018;9(1):1620.                                    doi: 10.3390/polym12020470
               doi: 10.1038/s41467-018-03759-y                 33.  Cheng Y, Cheng G, Xie C, Yin C, Dong X, Li Z. Biomimetic
            21.  Zhang Q, Lu H, Kawazoe N, Chen G. Pore size effect of   silk fibroin hydrogels strengthened by silica nanoparticles
               collagen scaffolds on cartilage regeneration. Acta Biomater.   distributed nanofibers facilitate bone repair.  Adv Healthc
               2014;10(5):2005-2013.                              Mater. 2021;10(9):2001646.
               doi: 10.1016/j.actbio.2013.12.042                  doi: 10.1002/adhm.202001646

            Volume 11 Issue 4 (2025)                       295                            doi: 10.36922/IJB025140118
   298   299   300   301   302   303   304   305   306   307   308