Page 304 - v11i4
P. 304

International Journal of Bioprinting                                Dual tuning of 3D-printed SilMA hydrogel




            34.  Lee J, Sultan M, Kim S, et al. Artificial auricular cartilage   of both cartilage and subchondral bone. Adv Healthc Mater.
               using silk fibroin and polyvinyl alcohol hydrogel. Int J Mol   2022;11(17):e2200602.
               Sci. 2017;18(8):1707.                              doi: 10.1002/adhm.202200602
               doi: 10.3390/ijms18081707
                                                               44.  Braxton T, Lim K, Alcala-Orozco C, et al. Mechanical and
            35.  Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds   physical characterization of a biphasic 3D printed silk-
               and osteogenesis. Biomaterials. 2005;26(27):5474-5491.  infilled scaffold for osteochondral tissue engineering. ACS
               doi: 10.1016/j.biomaterials.2005.02.002            Biomater Sci Eng. 2024;10(12):7606-7618.
                                                                  doi: 10.1021/acsbiomaterials.4c01865
            36.  Lutzweiler G, Ndreu Halili A, Engin Vrana N. The overview
               of porous, bioactive scaffolds as instructive biomaterials   45.  Li H, Li J, Yu S, Wu C, Zhan W. The mechanical properties
               for tissue regeneration and their clinical translation.   of  tibiofemoral  and  patellofemoral  articular  cartilage
               Pharmaceutics. 2020;12(7):602.                     in compression depend on anatomical regions.  Sci Rep.
               doi: 10.3390/pharmaceutics12070602                 2021;11(1):6128.
                                                                  doi: 10.1038/s41598-021-85716-2
            37.  Navaei A, Saini H, Christenson W, Sullivan RT, Ros R,
               Nikkhah M. Gold nanorod-incorporated gelatin-based   46.  Jin R, Xu B, Guo D, et al. Advanced chemical modification
               conductive hydrogels for engineering cardiac tissue   technology of inorganic oxide nanoparticles in epoxy resin
               constructs. Acta Biomater. 2016;41:133-146.        and mechanical properties of epoxy resin nanocomposites:
               doi: 10.1016/j.actbio.2016.05.027                  a review. Nano Mater Sci. 2024;18(8);1707.
                                                                  doi: 10.3390/ijms18081707
            38.  Chen S, Lei T, Zhang Y, Wu H, He S, Liu Y. Nanofiber induced
               silk fibroin nanofiber/silk fibroin (SFNF/SF) fibrous scaffolds   47.  Shao C, Li Y, Chi J, Ye F, Zhao Y. Hierarchically inverse opal
               for 3D cell culture. Fibers Polym. 2023;24(2):433-444.  porous scaffolds from droplet microfluidics for biomimetic
               doi: 10.1007/s12221-023-00113-y                    3D cell co-culture. Engineering. 2021;7(12):1778-1785.
                                                                  doi: 10.1016/j.eng.2020.06.031
            39.  Wang C-C, Yan K-C, Lin K-H, Liu H-C, Lin F-H. A highly
               organized three-dimensional alginate scaffold for cartilage   48.  Luo B, Wang S, Song X, Chen S, Qi Q, You Z. An
               tissue engineering prepared by microfluidic technology.   encapsulation‐free and hierarchical porous triboelectric
               Biomaterials. 2011;32(29):7118-7126.               scaffold with dynamic hydrophilicity for efficient cartilage
               doi: 10.1016/j.biomaterials.2011.06.018            regeneration. Adv Mater. 2024;36(27):2401009.
                                                                  doi: 10.1002/adma.202401009
            40.  Jia L, Zhang Y, Yao L, Zhang P, Ci Z, Zhou G. Regeneration
               of  human-ear-shaped  cartilage  with  acellular  cartilage   49.  Chen Y, Mehmood K, Chang Y-F, Tang Z, Li Y, Zhang H. The
               matrix-based biomimetic scaffolds.  Appl Mater Today.   molecular mechanisms of glycosaminoglycan biosynthesis
               2020;20:100639.                                    regulating  chondrogenesis  and  endochondral  ossification.
               doi: 10.1016/j.apmt.2020.100639                    Life Sci. 2023;335:122243.
                                                                  doi: 10.1016/j.lfs.2023.122243
            41.  O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect
               of pore size on cell adhesion in collagen-GAG scaffolds.   50.  Jia L, Hua Y, Zeng J, Liu W, Wang D, Jiang H. Bioprinting
               Biomaterials. 2005;26(4):433-441.                  and regeneration of auricular cartilage using a bioactive
               doi: 10.1016/j.biomaterials.2004.02.052            bioink based on microporous photocrosslinkable acellular
                                                                  cartilage matrix. Bioact Mater. 2022;16:66-81.
            42.  Im GI, Ko JY, Lee JH. Chondrogenesis of adipose stem cells      doi: 10.1016/j.bioactmat.2022.02.032
               in a porous polymer scaffold: influence of the pore size. Cell
               Transplant. 2012;21(11):2397-2405.              51.  Bettahalli NMS, Arkesteijn ITM, Wessling M, Poot AA,
               doi: 10.3727/096368912X638865                      Stamatialis D. Corrugated round fibers to improve cell
                                                                  adhesion and proliferation in tissue engineering scaffolds.
            43.  Sheng R, Chen J, Wang H, Luo Y, Liu J, Zhang W. Nanosilicate-  Acta Biomater. 2013;9(6):6928-6935.
               reinforced silk fibroin hydrogel for endogenous regeneration      doi: 10.1016/j.actbio.2013.02.029


















            Volume 11 Issue 4 (2025)                       296                            doi: 10.36922/IJB025140118
   299   300   301   302   303   304   305   306   307   308   309