Page 304 - v11i4
P. 304
International Journal of Bioprinting Dual tuning of 3D-printed SilMA hydrogel
34. Lee J, Sultan M, Kim S, et al. Artificial auricular cartilage of both cartilage and subchondral bone. Adv Healthc Mater.
using silk fibroin and polyvinyl alcohol hydrogel. Int J Mol 2022;11(17):e2200602.
Sci. 2017;18(8):1707. doi: 10.1002/adhm.202200602
doi: 10.3390/ijms18081707
44. Braxton T, Lim K, Alcala-Orozco C, et al. Mechanical and
35. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds physical characterization of a biphasic 3D printed silk-
and osteogenesis. Biomaterials. 2005;26(27):5474-5491. infilled scaffold for osteochondral tissue engineering. ACS
doi: 10.1016/j.biomaterials.2005.02.002 Biomater Sci Eng. 2024;10(12):7606-7618.
doi: 10.1021/acsbiomaterials.4c01865
36. Lutzweiler G, Ndreu Halili A, Engin Vrana N. The overview
of porous, bioactive scaffolds as instructive biomaterials 45. Li H, Li J, Yu S, Wu C, Zhan W. The mechanical properties
for tissue regeneration and their clinical translation. of tibiofemoral and patellofemoral articular cartilage
Pharmaceutics. 2020;12(7):602. in compression depend on anatomical regions. Sci Rep.
doi: 10.3390/pharmaceutics12070602 2021;11(1):6128.
doi: 10.1038/s41598-021-85716-2
37. Navaei A, Saini H, Christenson W, Sullivan RT, Ros R,
Nikkhah M. Gold nanorod-incorporated gelatin-based 46. Jin R, Xu B, Guo D, et al. Advanced chemical modification
conductive hydrogels for engineering cardiac tissue technology of inorganic oxide nanoparticles in epoxy resin
constructs. Acta Biomater. 2016;41:133-146. and mechanical properties of epoxy resin nanocomposites:
doi: 10.1016/j.actbio.2016.05.027 a review. Nano Mater Sci. 2024;18(8);1707.
doi: 10.3390/ijms18081707
38. Chen S, Lei T, Zhang Y, Wu H, He S, Liu Y. Nanofiber induced
silk fibroin nanofiber/silk fibroin (SFNF/SF) fibrous scaffolds 47. Shao C, Li Y, Chi J, Ye F, Zhao Y. Hierarchically inverse opal
for 3D cell culture. Fibers Polym. 2023;24(2):433-444. porous scaffolds from droplet microfluidics for biomimetic
doi: 10.1007/s12221-023-00113-y 3D cell co-culture. Engineering. 2021;7(12):1778-1785.
doi: 10.1016/j.eng.2020.06.031
39. Wang C-C, Yan K-C, Lin K-H, Liu H-C, Lin F-H. A highly
organized three-dimensional alginate scaffold for cartilage 48. Luo B, Wang S, Song X, Chen S, Qi Q, You Z. An
tissue engineering prepared by microfluidic technology. encapsulation‐free and hierarchical porous triboelectric
Biomaterials. 2011;32(29):7118-7126. scaffold with dynamic hydrophilicity for efficient cartilage
doi: 10.1016/j.biomaterials.2011.06.018 regeneration. Adv Mater. 2024;36(27):2401009.
doi: 10.1002/adma.202401009
40. Jia L, Zhang Y, Yao L, Zhang P, Ci Z, Zhou G. Regeneration
of human-ear-shaped cartilage with acellular cartilage 49. Chen Y, Mehmood K, Chang Y-F, Tang Z, Li Y, Zhang H. The
matrix-based biomimetic scaffolds. Appl Mater Today. molecular mechanisms of glycosaminoglycan biosynthesis
2020;20:100639. regulating chondrogenesis and endochondral ossification.
doi: 10.1016/j.apmt.2020.100639 Life Sci. 2023;335:122243.
doi: 10.1016/j.lfs.2023.122243
41. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect
of pore size on cell adhesion in collagen-GAG scaffolds. 50. Jia L, Hua Y, Zeng J, Liu W, Wang D, Jiang H. Bioprinting
Biomaterials. 2005;26(4):433-441. and regeneration of auricular cartilage using a bioactive
doi: 10.1016/j.biomaterials.2004.02.052 bioink based on microporous photocrosslinkable acellular
cartilage matrix. Bioact Mater. 2022;16:66-81.
42. Im GI, Ko JY, Lee JH. Chondrogenesis of adipose stem cells doi: 10.1016/j.bioactmat.2022.02.032
in a porous polymer scaffold: influence of the pore size. Cell
Transplant. 2012;21(11):2397-2405. 51. Bettahalli NMS, Arkesteijn ITM, Wessling M, Poot AA,
doi: 10.3727/096368912X638865 Stamatialis D. Corrugated round fibers to improve cell
adhesion and proliferation in tissue engineering scaffolds.
43. Sheng R, Chen J, Wang H, Luo Y, Liu J, Zhang W. Nanosilicate- Acta Biomater. 2013;9(6):6928-6935.
reinforced silk fibroin hydrogel for endogenous regeneration doi: 10.1016/j.actbio.2013.02.029
Volume 11 Issue 4 (2025) 296 doi: 10.36922/IJB025140118