Page 357 - v11i4
P. 357

International Journal of Bioprinting                                 GradGelMA 3D-bioprinted vascular skin




            39.  Zandi N, Daniele M, Brown A. Advances in fibrin-  48.  Singh A, Dalal N, Tayalia P. An interplay of matrix stiffness,
               based bioprinting for skin tissue regeneration: exploring   dimensionality and adhesivity on cellular behavior. Biomed
               design, and innovative approaches. Biomed Mater Devices.   Mater. 2023;18(2): 025010.
               2025;3:330-348.                                    doi: 10.1088/1748-605X/acb7c0
               doi: 10.1007/s44174-024-00198-w
                                                               49.  Trujillo S, Gonzalez-Garcia C, Rico P, et al. Engineered 3D
            40.  Fauzi MB, Rashidbenam Z, Bin Saim A, Binti Hj Idrus R.   hydrogels with full-length fibronectin that sequester and
               Preliminary study of in vitro three-dimensional skin model   present growth factors. Biomaterials. 2020; 252:120104.
               using an ovine collagen type i sponge seeded with co-culture      doi: 10.1016/j.biomaterials.2020.120104
               skin cells: submerged versus air-liquid interface conditions.
               Polymers. 2020;12(12): 2784.                    50.  Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/γ c null
               doi: 10.3390/polym12122784                         mouse: an excellent recipient mouse model for engraftment
                                                                  of human cells. Blood. 2002;100(9):3175-3182.
            41.  Monsuur HN, Boink MA, Weijers EM, et al. Methods to      doi: 10.1182/blood-2001-12-0207
               study differences in cell mobility during skin wound healing
               in vitro. J Biomech. 2016;49(8):1381-1387.      51.  Albanna M, Binder KW, Murphy SV, et al. In situ
               doi: 10.1016/j.jbiomech.2016.01.040                bioprinting of autologous skin cells accelerates wound
                                                                  healing of extensive excisional full-thickness wounds.  Sci
            42.  Petry L, Kippenberger S, Meissner M, et al. Directing   Rep. 2019;9(1):1856.
               adipose‐derived stem cells into keratinocyte‐like cells:      doi: 10.1038/s41598-018-38366-w
               impact of medium composition and culture condition. J Eur
               Acad Dermatol Venereol. 2018;32(11):2010-2019.   52.  Wei Q,  Su J, Meng  S, et al. MiR‐17‐5p‐engineered sEVs
               doi: 10.1111/jdv.15010                             encapsulated in GelMA hydrogel facilitated diabetic wound
                                                                  healing by targeting PTEN and p21.  Adv Sci (Weinh).
            43.  Colin E, Plyer A, Golzio M, Meyer N, Faver G, Orlik X. Imaging   2024;11(13):2307761.
               of the skin microvascularization using spatially depolarized
               dynamic speckle. J Biomed Opt. 2022;27(4):046003.      doi: 10.1002/advs.202307761
               doi: 10.1117/1.Jbo.27.4.046003                  53.  Zhang G, Zhang Z, Cao G, et al. Engineered dermis loaded
                                                                  with confining forces promotes full-thickness wound
            44.  Hu  X,  Wang  L,  Deng  J,  et  al.  Dietary  nitrate  accelerates
               the healing of infected skin wounds in mice by increasing   healing by enhancing vascularisation and epithelialisation.
               microvascular density.  Biochem Biophys Res Commun.   Acta Biomater. 2023; 170: 464-478.
               2023;686:149176.                                   doi: 10.1016/j.actbio.2023.08.049
               doi: 10.1016/j.bbrc.2023.149176                 54.  Jin T, Fu Z, Zhou L, et al. GelMA loaded with platelet lysate
            45.  Fu T, Sullivan DP, Gonzalez AM, et al. Mechanotransduction   promotes skin regeneration and angiogenesis in pressure
               via endothelial adhesion molecule CD31 initiates   ulcers by activating STAT3. Sci Rep. 2024; 14(1): 18345.
               transmigration and reveals a role for VEGFR2 in diapedesis.      doi: 10.1038/s41598-024-67304-2
               Immunity. 2023;56(10):2311-2324.e6.             55.  Chen L, Ye JL, Gao C, Deng F, Liu W, Zhang Q. Design and
               doi: 10.1016/j.immuni.2023.08.001                  fabrication of gelatin-based hydrogel loaded with modified
            46.  Park H, Collignon AM, Lepry WC, et al. Acellular dense   amniotic extracellular matrix for enhanced wound healing.
               collagen-S53P4 bioactive glass hybrid gel scaffolds form   Heliyon. 2023;9(10):e20521.
               more bone  than stem cell delivered constructs.  Mater Sci      doi: 10.1016/j.heliyon.2023.e20521
               Eng C Mater Biol Appl. 2021;120:111743.         56.  Hao X, Luo J, Huang Y, et al. Injectable antiswelling and
               doi: 10.1016/j.msec.2020.111743                    high-strength bioactive hydrogels with a wet adhesion and
            47.  Trappmann B, Gautrot JE, Connelly JT, et al. Extracellular-  rapid gelling process to promote sutureless wound closure
               matrix tethering regulates stem-cell fate.  Nat Mater.   and  scar-free  repair  of  infectious wounds.  ACS Nano.
               2012;11(7): 642-649.                               2023;17(21): 22015-22034.
               doi: 10.1038/nmat3339                              doi: 10.1021/acsnano.3c08625

















            Volume 11 Issue 4 (2025)                       349                            doi: 10.36922/IJB025090069
   352   353   354   355   356   357   358   359   360   361   362