Page 356 - v11i4
P. 356
International Journal of Bioprinting GradGelMA 3D-bioprinted vascular skin
17. Mazio C, Casale C, Imparato G, et al. Pre-vascularized for vascularized skin regeneration. Adv Healthc Mater.
dermis model for fast and functional anastomosis with host 2021;10(16):2100523.
vasculature. Biomaterials. 2019;192:159-170. doi: 10.1002/adhm.202100523
doi: 10.1016/j.biomaterials.2018.11.018
29. Barros NR, Kim HJ, Gouidie MJ, et al. Biofabrication
18. Xu H, Liu Z, Wei Y, et al. Complexation‐induced resolution of endothelial cell, dermal fibroblast, and multilayered
enhancement pleiotropic small diameter vascular constructs keratinocyte layers for skin tissue engineering. Biofabrication.
with superior antibacterial and angiogenesis properties. Adv 2021;13(3):035030.
Healthc Mater. 2023;12(29):2301809. doi: 10.1088/1758-5090/aba503
doi: 10.1002/adhm.202301809
30. Xiang P, Yan L, Ge L, He X, Du N, Liu X. Development of
19. Wan H, Cao Y, Lo LW, Zhao J, Sepúlveda N, Wang a radial-flux machine with multi-shaped magnet rotor and
C. Flexible carbon nanotube synaptic transistor for non-ferromagnetic yoke for low torque ripple and rotor
neurological electronic skin applications. ACS Nano. mass. IEEE Trans Ind Appl. 61;2025:2897-2910.
2020;14(8):10402-10412. doi: 10.1109/TIA.2025.3532558
doi: 10.1021/acsnano.0c04259
31. Xiang P, Yan L, Guo Y, He X, Gerada C, Chen IM. A
20. Vidal SEL, Tamamoto KA, Nguyen H, Abbott RD, Cairns DM, concentrated-flux-type pm machine with irregular magnets
Kaplan DL. 3D biomaterial matrix to support long term, full and iron poles. IEEE/ASME Trans Mech. 2023;29(1):
thickness, immuno-competent human skin equivalents with 691-702.
nervous system components. Biomaterials. 2019;198:194-203. doi: 10.1109/TMECH.2023.3293505
doi: 10.1016/j.biomaterials.2018.04.044
32. Guo J, Gu H, Yin S, et al. Hepatocyte-derived Igκ
21. Xiong M, Yang X, Shi Z, et al. Programmable artificial promotes HCC progression by stabilizing electron transfer
skins accomplish antiscar healing with multiple appendage flavoprotein subunit α to facilitate fatty acid β-oxidation.
regeneration. Adv Mater. 2024;36(50): 2407322. J Exp Clin Cancer Res. 2024;43(1):280.
doi: 10.1002/adma.202407322 doi: 10.1186/s13046-024-03203-8
22. Xia Y, Yan S, Wei H, et al. Multifunctional porous bilayer 33. Liu C, Qin W, Wang Y, et al. 3D printed gelatin/sodium
artificial skin for enhanced wound healing. ACS Appl Mater alginate hydrogel scaffolds doped with nano-attapulgite for
Interfaces. 2024;16(27):34578-34590. bone tissue repair. Int J Nanomed. 2021;16:8417-8432.
doi: 10.1021/acsami.4c05074 doi: 10.2147/IJN.S339500
23. Ma J, Qin C, Wu J, et al. 3D multicellular micropatterning 34. Pierce MC, Strasswimmer J, Hyle Park B, Cense B, De
biomaterials for hair regeneration and vascularization. Boer JF. Birefringence measurements in human skin using
Mater Horiz. 2023;10(9):3773-3784. polarization-sensitive optical coherence tomography.
doi: 10.1039/d3mh00528c J Biomed Opt. 2004;9(2):287-291.
24. Motter Catarino C, Cigaran Schuck D, Dechiario L, Karande doi: 10.1117/1.1645797
P. Incorporation of hair follicles in 3D bioprinted models of 35. Wang Y, Liu Y, Chen S, et al. Enhancing bone regeneration
human skin. Sci Adv. 2023;9(41):eadg0297. through 3D printed biphasic calcium phosphate scaffolds
doi: 10.1126/sciadv.adg0297 featuring graded pore sizes. Bioact Mater. 2024;46:21–36.
25. Chen H, Ma X, Gao T, et al. Robot-assisted in situ doi: 10.1016/j.bioactmat.2024.11.024
bioprinting of gelatin methacrylate hydrogels with stem cells 36. Kim BS, Yang WK, Jeong SK, et al. 3D cell printing of in vitro
induces hair follicle-inclusive skin regeneration. Biomed stabilized skin model and in vivo pre-vascularized skin patch
Pharmacother. 2023;158:114140. using tissue-specific extracellular matrix bioink: a step towards
doi: 10.1016/j.biopha.2022.114140 advanced skin tissue engineering. Biomaterials. 2018;168:38-53.
26. Zhao W, Chen H, Zhang Y, et al. Adaptive multi‐degree‐of‐ doi: 10.1016/j.biomaterials.2018.03.040
freedom in situ bioprinting robot for hair‐follicle‐inclusive 37. Won-woo C, Minjun A, Byoung SK, Dong-Woo C. Blood‐
skin repair: a preliminary study conducted in mice. Bioeng lymphatic integrated system with heterogeneous melanoma
Transl Med. 2022;7(3):e10303. spheroids via in‐bath three‐dimensional bioprinting for
doi: 10.1002/btm2.10303
modelling of combinational targeted therapy. Adv Sci.
27. Dai LG, Dai NT, Chen TY, Kang LY, Hsu SH. A bioprinted 2022;9(29):2202093.
vascularized skin substitute with fibroblasts, keratinocytes, doi: 10.1002/advs.202202093
and endothelial progenitor cells for skin wound healing. 38. Song J, Liu T, Liao Z, et al. Digital light processing
Bioprinting. 2022;28:e00237. bioprinting neural systems with porous hydrogel in
doi: 10.1016/j.bprint.2022.e00237
structure and function for disease models. Cell Rep Phys Sci.
28. Ma J, Qin C, Wu J, et al. 3D printing of strontium silicate 2024;5(12):102311.
microcylinder‐containing multicellular biomaterial inks doi: 10.1016/j.xcrp.2024.102311
Volume 11 Issue 4 (2025) 348 doi: 10.36922/IJB025090069