Page 356 - v11i4
P. 356

International Journal of Bioprinting                                 GradGelMA 3D-bioprinted vascular skin




            17.  Mazio C, Casale C, Imparato G, et al. Pre-vascularized   for vascularized skin regeneration.  Adv Healthc Mater.
               dermis model for fast and functional anastomosis with host   2021;10(16):2100523.
               vasculature. Biomaterials. 2019;192:159-170.       doi: 10.1002/adhm.202100523
               doi: 10.1016/j.biomaterials.2018.11.018
                                                               29.  Barros NR, Kim HJ, Gouidie MJ, et al. Biofabrication
            18.  Xu H, Liu Z, Wei Y, et al. Complexation‐induced resolution   of  endothelial  cell,  dermal  fibroblast,  and  multilayered
               enhancement pleiotropic small diameter vascular constructs   keratinocyte layers for skin tissue engineering. Biofabrication.
               with superior antibacterial and angiogenesis properties. Adv   2021;13(3):035030.
               Healthc Mater. 2023;12(29):2301809.                doi: 10.1088/1758-5090/aba503
               doi: 10.1002/adhm.202301809
                                                               30.  Xiang P, Yan L, Ge L, He X, Du N, Liu X. Development of
            19.  Wan  H,  Cao  Y,  Lo  LW,  Zhao  J,  Sepúlveda  N,  Wang   a radial-flux machine with multi-shaped magnet rotor and
               C. Flexible carbon nanotube synaptic transistor for   non-ferromagnetic yoke for low torque ripple and rotor
               neurological electronic skin applications.  ACS Nano.   mass. IEEE Trans Ind Appl. 61;2025:2897-2910.
               2020;14(8):10402-10412.                            doi: 10.1109/TIA.2025.3532558
               doi: 10.1021/acsnano.0c04259
                                                               31.  Xiang P, Yan L, Guo Y, He X, Gerada C, Chen IM. A
            20.  Vidal SEL, Tamamoto KA, Nguyen H, Abbott RD, Cairns DM,   concentrated-flux-type pm machine with irregular magnets
               Kaplan DL. 3D biomaterial matrix to support long term, full   and iron poles.  IEEE/ASME Trans Mech. 2023;29(1):
               thickness, immuno-competent human skin equivalents with   691-702.
               nervous system components. Biomaterials. 2019;198:194-203.      doi: 10.1109/TMECH.2023.3293505
               doi: 10.1016/j.biomaterials.2018.04.044
                                                               32.   Guo J, Gu H, Yin S, et al. Hepatocyte-derived Igκ
            21.  Xiong M, Yang X, Shi Z, et al. Programmable artificial   promotes HCC progression by stabilizing electron transfer
               skins accomplish antiscar healing with multiple appendage   flavoprotein subunit α to facilitate fatty acid β-oxidation.
               regeneration. Adv Mater. 2024;36(50): 2407322.     J Exp Clin Cancer Res. 2024;43(1):280.
               doi: 10.1002/adma.202407322                        doi: 10.1186/s13046-024-03203-8
            22.  Xia Y, Yan S, Wei H, et al. Multifunctional porous bilayer   33.  Liu C, Qin W, Wang Y, et al. 3D printed gelatin/sodium
               artificial skin for enhanced wound healing. ACS Appl Mater   alginate hydrogel scaffolds doped with nano-attapulgite for
               Interfaces. 2024;16(27):34578-34590.               bone tissue repair. Int J Nanomed. 2021;16:8417-8432.
               doi: 10.1021/acsami.4c05074                        doi: 10.2147/IJN.S339500
            23.  Ma J, Qin C, Wu J, et al. 3D multicellular micropatterning   34.  Pierce MC, Strasswimmer J, Hyle Park B, Cense B, De
               biomaterials for hair regeneration and vascularization.   Boer JF. Birefringence measurements in human skin using
               Mater Horiz. 2023;10(9):3773-3784.                 polarization-sensitive optical coherence tomography.
               doi: 10.1039/d3mh00528c                            J Biomed Opt. 2004;9(2):287-291.
            24.  Motter Catarino C, Cigaran Schuck D, Dechiario L, Karande      doi: 10.1117/1.1645797
               P. Incorporation of hair follicles in 3D bioprinted models of   35.  Wang Y, Liu Y, Chen S, et al. Enhancing bone regeneration
               human skin. Sci Adv. 2023;9(41):eadg0297.          through 3D printed biphasic calcium phosphate scaffolds
               doi: 10.1126/sciadv.adg0297                        featuring graded pore sizes. Bioact Mater. 2024;46:21–36.
            25.  Chen H, Ma X, Gao T, et al. Robot-assisted in situ      doi: 10.1016/j.bioactmat.2024.11.024
               bioprinting of gelatin methacrylate hydrogels with stem cells   36.  Kim BS, Yang WK, Jeong SK, et al. 3D cell printing of in vitro
               induces hair follicle-inclusive skin regeneration.  Biomed   stabilized skin model and in vivo pre-vascularized skin patch
               Pharmacother. 2023;158:114140.                     using tissue-specific extracellular matrix bioink: a step towards
               doi: 10.1016/j.biopha.2022.114140                  advanced skin tissue engineering. Biomaterials. 2018;168:38-53.
            26.  Zhao W, Chen H, Zhang Y, et al. Adaptive multi‐degree‐of‐  doi: 10.1016/j.biomaterials.2018.03.040
               freedom in situ bioprinting robot for hair‐follicle‐inclusive   37.  Won-woo C, Minjun A, Byoung SK, Dong-Woo C. Blood‐
               skin repair: a preliminary study conducted in mice. Bioeng   lymphatic integrated system with heterogeneous melanoma
               Transl Med. 2022;7(3):e10303.                      spheroids via in‐bath three‐dimensional bioprinting for
               doi: 10.1002/btm2.10303
                                                                  modelling of combinational targeted therapy.  Adv  Sci.
            27.  Dai LG, Dai NT, Chen TY, Kang LY, Hsu SH. A bioprinted   2022;9(29):2202093.
               vascularized skin substitute with fibroblasts, keratinocytes,   doi: 10.1002/advs.202202093
               and endothelial progenitor cells for skin wound healing.   38.  Song J, Liu T, Liao Z, et al. Digital light processing
               Bioprinting. 2022;28:e00237.                       bioprinting neural systems with porous hydrogel in
               doi: 10.1016/j.bprint.2022.e00237
                                                                  structure and function for disease models. Cell Rep Phys Sci.
            28.  Ma J, Qin C, Wu J, et al. 3D printing of strontium silicate   2024;5(12):102311.
               microcylinder‐containing  multicellular  biomaterial  inks      doi: 10.1016/j.xcrp.2024.102311


            Volume 11 Issue 4 (2025)                       348                            doi: 10.36922/IJB025090069
   351   352   353   354   355   356   357   358   359   360   361