Page 469 - v11i4
P. 469
International Journal of Bioprinting Tunable GelMA-based bioinks for keloid modeling
40. Karaca MA, Khalili V, Ege D. Highly flexible methyl doi: 10.1016/j.jid.2017.05.041
cellulose/gelatin hydrogels for potential cartilage tissue 48. Saraswati S, Marrow SMW, Watch LA, Young PP.
engineering applications. Biopolymers. 2025;116(1):e23641. Identification of a pro-angiogenic functional role for FSP1-
doi: 10.1002/bip.23641
positive fibroblast subtype in wound healing. Nat Commun.
41. Šebenik U, Lapasin R, Krajnc M. Rheology of aqueous 2019;10(1):3027.
dispersions of laponite and TEMPO-oxidized nanofibrillated doi: 10.1038/s41467-019-10965-9
cellulose. Carbohydr Polym. 2020;240:116330. 49. Camman M, Nieswic N, Joanne P, et al. Fibrotic-like collagen
doi: 10.1016/j.carbpol.2020.116330 matrices as innovative 3D in vitro models for investigating
42. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, the impact of pathological ECM on muscle regeneration in
Annabi N, Khademhosseini A. Synthesis, properties, and muscular dystrophies. bioRxiv. 2024.
biomedical applications of gelatin methacryloyl (GelMA) doi: 10.1101/2024.12.23.630059
hydrogels. Biomaterials. 2015;73:254-271. 50. Tai Y, Woods EL, Dally J, et al. Myofibroblasts: function,
doi: 10.1016/j.biomaterials.2015.08.045 formation, and scope of molecular therapies for skin fibrosis.
43. Li H, Chen S, Dissanayaka WL, Wang M. Gelatin Biomolecules. 2021;11(8):1095.
methacryloyl/sodium alginate/cellulose nanocrystal inks doi: 10.3390/biom11081095
and 3D printing for dental tissue engineering applications. 51. Lee W, Debasitis JC, Lee VK, et al. Multi-layered culture
ACS Omega. 2024;9(49):48361-48373. of human skin fibroblasts and keratinocytes through
doi: 10.1021/acsomega.4c06458 three-dimensional freeform fabrication. Biomaterials.
44. Xu L, Zhang Z, Jorgensen AM, et al. Bioprinting a skin patch 2009;30(8):1587-1595.
with dual-crosslinked gelatin (GelMA) and silk fibroin doi: 10.1016/j.biomaterials.2008.12.009
(SilMA): an approach to accelerating cutaneous wound 52. Jang Y, Jang J, Kim BY, Song YS, Lee DY. Effect of gelatin
healing. Mater Today Bio. 2023;18:100550. content on degradation behavior of PLLA/gelatin hybrid
doi: 10.1016/j.mtbio.2023.100550 membranes. Tissue Eng Regen Med. 2024;21(4):557-569.
45. Zeimaran E, Pourshahrestani S, Röder J, Detsch R, doi: 10.1007/s13770-024-00626-4
Boccaccini AR. 3D printing of photocrosslinked alginate 53. Lee YJ, Oh JH, Park S, et al. The application of L-serine-
dialdehyde-gelatin hydrogels reinforced with cobalt- incorporated gelatin sponge into the calvarial defect
containing mesoporous bioactive glass nanoparticles for of the ovariectomized rats. Tissue Eng Regen Med.
developing skin wound dressings. Adv Mater Interfaces. 2025;22(1):91-104.
2025;12(11):2400913. doi: 10.1007/s13770-024-00686-6
doi: 10.1002/admi.202400913
54. Vigata M, Meinert C, Pahoff S, Bock N, Hutmacher DW.
46. Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. The Keloid Gelatin methacryloyl hydrogels control the localized delivery
disorder: heterogeneity, histopathology, mechanisms and of albumin-bound paclitaxel. Polymers. 2020;12(2):501.
models. Front Cell Dev Biol. 2020;8:360. doi: 10.3390/polym12020501
doi: 10.3389/fcell.2020.00360.
55. Zhu M, Wang Y, Ferracci G, Zheng J, Cho NJ, Lee BH.
47. Hsu CK, Lin HH, Harn HI, et al. Caveolin-1 controls Gelatin methacryloyl and its hydrogels with an exceptional
hyperresponsiveness to mechanical stimuli and fibrogenesis- degree of controllability and batch-to-batch consistency. Sci
associated RUNX2 activation in keloid fibroblasts. J Invest Rep. 2019;9(1):6863.
Dermatol. 2018;138(1):208-218. doi: 10.1038/s41598-019-42186-x
Volume 11 Issue 4 (2025) 461 doi: 10.36922/IJB025160154